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Abstract

Two-phase surfactant-laden flow and transport in porous media are cen-
tral to many natural and engineering applications. Surfactants modify two-
phase flow by altering interfacial tension and wettability, while two-phase
flow controls surfactant transport pathways and adsorption sites. These cou-
pled processes are commonly modeled by combining Darcy-type two-phase
flow equations with advection—dispersion—adsorption transport equations,
with capillary pressure—saturation relationships scaled using the Leverett
J-function. However, the Leverett J-function simplifies the porous medium
as bundles of cylindrical tubes and decouples interfacial tension and wetta-
bility, limiting representation of angular pore geometries and coupled inter-
facial tension and wettability effects. We present a modeling framework that

incorporates pore angularity and interfacial tension—wettability coupling ef-
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fect into Darcy-scale surfactant-laden flow and transport models.  Within
this framework, we derive two-phase flow properties for angular pores, up-
scale them across pore size distributions, and obtain explicit and closed-form
expressions for the upscaled properties. These expressions are incorporated
into a coupled flow—transport model for simulating transient two-phase flow
and surfactant transport processes. Results suggest a nonmonotonic and
nonlinear dependence of two-phase flow properties on pore structure (an-
gularity and size distribution) and interfacial tension (controlled by surfac-
tant type and concentration). Example simulations of water flow and PFAS
(surfactant-like contaminants) migration in unsaturated soils indicate that
surfactant-induced flow effects on PFAS leaching are generally minor under
typical site conditions, whereas pore angularity exerts dominant control on
water flow, interfacial area, and consequently PFAS retention. Overall, the
upscaling framework offers a more physically grounded approach for model-
ing two-phase surfactant-laden fluid flow and surfactant transport in porous

media.

Keywords: Surfactant, Per- and polyfluoroalkyl substances (PFAS),

Interfacial tension, Contact angle, Angular pores, Upscaling

1. Introduction

Two-phase surfactant-laden fluid flow and surfactant transport in porous
media play an important role in many natural and industrial applications.
Surfactants can reduce interfacial tension between fluids and alter solid sur-
face wettability through interfacial adsorption, which may alter fluid flow
through porous structures. Fluid flow, in turn, controls the advection and
diffusion of surfactants and governs the fluid-fluid and fluid—solid interfaces

that facilitate the interfacial adsorption of surfactants. These mechanisms
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have been harnessed to remove pollutants (e.g., non-aqueous phase liquid
(NAPL) and per- and polyfluoroalkyl substances (PFAS)) from soils and
groundwater (e.g., Al-Raoush, 2009; Maroli et al., 2024), enhance oil and
gas recovery (e.g., Pope and Nelson, 1978; Lake, 1989), improve CO2 and
hydrogen storage efficiency (e.g., Foyen et al., 2020; Chaturvedi et al., 2022),
and optimize fluid behavior in manufactured porous materials such as cooling
systems and COq capture electrolyzers (e.g., Ge et al., 2022). Consequently,
mechanistic understandings and accurate predictions of the coupled two-
phase flow and surfactant transport are essential for advancing technologies
in these environmental, energy, and climate applications.

Modeling surfactant-laden fluid flow in porous media is challenging due
to the nonlinear coupling between fluid flow and surfactant transport. A
common strategy is to couple Darcy-scale two-phase flow with surfactant
transport (e.g., Pope and Nelson, 1978; Abriola et al., 1993; Smith and Gill-
ham, 1994), where flow is described by two-phase extended Darcy’s law (or
simplified forms such as Richards’ equation) and transport is governed by
advection—dispersion—adsorption equations. Most models did not account for
surfactant adsorption at fluid-fluid interfaces. Surfactant effects are typically
incorporated by scaling the capillary pressure—saturation relationship with
the Leverett J-function (i.e., J(S) o< 1/(+y cos @), where S is fluid saturation,
0 the contact angle, and 7 the fluid—fluid interfacial tension), while other
flow properties such as relative permeability and interfacial area—saturation
relations are usually assumed unchanged (e.g., Smith and Gillham, 1994).

The Leverett J-function, originally derived semi-empirically by Leverett
(1941), relies on two major simplifications. First, it represents pore spaces
as bundles of cylindrical tubes, whereas many porous media exhibit angular

geometries that may strongly alter fluid configurations, capillary pressure,
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relative permeability, and interfacial area. Second, it assumes that interfacial
tension and contact angle are independent, which may break down when
surfactants are present. Surfactant adsorption modifies fluid—fluid and solid—
fluid interfacial tensions, thereby altering the contact angle. Accounting for
pore angularity and the coupling between interfacial tension and contact
angle is critical for more accurate predictions of two-phase flow properties
of different surfactant-free fluid systems (e.g., Tokunaga et al., 2013; Wang
et al., 2016).

The impact of pore angularity on two-phase surfactant-free fluid flow
is well established through experiments (e.g., Dong and Chatzis, 1995; Oren
and Bakke, 2003) and pore-scale and upscaling simulations (e.g., Tuller et al.,
1999; Diamantopoulos and Durner, 2013, 2015; Jiang et al., 2020a,b). In
contrast, two-phase flow of surfactant-laden fluids in angular porous media
remains underexplored (Wijnhorst et al., 2020). Existing studies rely mainly
on experiments and empirical models (e.g., Desai et al., 1991; Karagunduz
et al., 2001), which are difficult to generalize across pore structures, wetta-
bility conditions, surfactant chemistries, and concentrations. This highlights
the need to develop predictive pore-scale and upscaling models for deriving
two-phase flow properties under diverse conditions and improving coupled
two-phase flow—surfactant transport frameworks.

Among the modeling approaches, the bundle-of-capillary-tubes model
provides an attractive framework. It can efficiently quantify flow and trans-
port properties at the representative elementary volume (REV) scale (e.g.,
Diamantopoulos and Durner, 2013), yielding explicit and/or closed-form ex-
pressions that can be directly integrated into Darcy-scale models (Diaman-
topoulos and Durner, 2015). Moreover, it captures the effects of pore an-

gularity for surfactant-free fluids with good agreements with experimental



OCoOoO~NOOPr,WNE

DU NUNUCUIOUIAORNANRNMARNARNARNDNWWWWRWRWWRWWRNNRNNRNNNNNNRPRRRERRRRRRPR
ARRANPRPOOONOITRWNPRPOOONDIRNRONROOONONERONROOCONNONRWNROOONOUNWNRO

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

observations (e.g., Or and Tuller, 1999; Tuller and Or, 2001; Diamantopoulos
and Durner, 2013; Jiang et al., 2020b). Building on this foundation, we ex-
tend the bundle-of-capillary-tubes concept to develop an upscaling workflow
for deriving REV-scale two-phase flow properties of surfactant-laden fluids in
angular porous media and integrating the derived properties into Darcy-scale
coupled flow and transport models. This upscaling workflow consists of four
key steps: (1) compute surfactant-laden fluid configurations in a single an-
gular pore represented by a angular tube; (2) derive the upscaled two-phase
flow properties for a porous medium whose void spaces are represented by a
bundle of tubes; (3) formulate explicit expressions and closed-form functions
for the new properties; and (4) integrate these expressions into Darcy-scale
flow and surfactant transport models. This is the first framework that explic-
itly integrates pore angularity and interfacial tension—contact angle coupling
into Darcy-scale two-phase flow surfactant transport models.

We demonstrate the workflow’s potential by applying it to a representa-
tive case: PFAS transport in unsaturated soils. PFAS, a class of fluorinated
surfactant contaminants, have raised global health concerns due to their
ubiquity, persistence, bioaccumulation, and toxicity at ng/L concentrations.
Predicting their migration in soils remains challenging because it is governed
by the coupled effects of interfacial interactions, surface tension variations,
and transient unsaturated flow within irregular, often angular, pore spaces
(Figure 1). Existing numerical models—typically based on Richards’ equa-
tion coupled with advection—dispersion—adsorption formulations—account
for surface tension effects only through scaling the capillary pressure—saturation
curve using the standard Leverett J-function (e.g., Guo et al., 2020; Silva
et al., 2020; Zeng and Guo, 2021). These approaches inherently neglect the

influence of pore angularity and the coupling between interfacial tension and
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contact angle, both of which may strongly affect two-phase flow properties
and PFAS transport. We employ our framework to quantify how these fac-
tors regulate PFAS migration in unsaturated soil columns under laboratory

conditions, providing insights for future field-scale modeling efforts.

(a) (b) (c)

PFAS/Surfactant

Contaminants PFAS/Surfactant
(e.g., PFAS/Surfactant) . ‘
g s v
2 - & Ty L,
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Figure 1: (a) Schematic of soil contamination by surfactant-like chemicals, such as per-
and polyfluoroalkyl substances (PFAS). (b) Accumulation and adsorption of PFAS at the
air—water interfaces in unsaturated soil pores. (c) Surface tension and contact angle of
PFAS-laden water compared with PFAS-free water. Panels (a) and (b) are revised from
Chen and Guo (2023) with permission of the authors and Wiley.

2. Methods

2.1. Interfacial tension and contact angle for surfactant-laden fluids

For two fluids (i.e., a wetting-phase fluid and a nonwetting-phase fluid)
that are surfactant-free and resting on a solid surface, the interfacial forces
at the three-phase contact line follow Young-Dupré equation (Young, 1805;
Dupré and Dupré, 1869)

Ywn,0 €08 00 = Vsn,0 — Vsw,0 (1)
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where Ym0, Ysn,0, and Ysw,o are the interfacial tension between surfactant-
free fluids, the interfacial tension between solid and surfactant-free nonwetting-
phase fluid, and the interfacial tension between solid and surfactant-free
wetting-phase fluid, respectively; 6 is the intrinsic contact angle between
the solid and surfactant-free fluids.

When surfactants are present, they can adsorb at the fluid—fluid and
fluid—solid interfaces, altering their interfacial tensions. Because the interfa-

cial forces at the three-phase contact line remain balanced, we obtain

Ywn cosf) = Vsn — Vsw» (2)

where Yun, Ysn, and 7ys, are the interfacial tension between surfactant-laden
solid and surfactant-laden nonwetting-phase fluid, the interfacial tension be-
tween surfactant-laden solid and surfactant-laden wetting-phase fluid, and
the interfacial tension between surfactant-laden fluids, respectively; and 6
is the contact angle in the presence of interfacial adsorption of surfactants.
Note that if vun > |Ysn—7Yswl|, the surface is partially wet to the wetting-phase
fluid. Once 7, becomes smaller than |7ys, —vsw|, the contact line disappears
and the solid surface is completely wet by the wetting-phase fluid.

In Equation (2), v, can be given by the Szyszkowski equation,

Ywn = Ywn,0 |:1 —boIn (1 + ajé>:| s (3)

142%%

where Cj, is the surfactant concentration in the wetting-phase fluid (o = w)
or nonwetting-phase fluid (o = nw), and a, and b, are model parameters
obtained via fitting to measured surface tension data. Accordingly, we can
compute the fluid—fluid interfacial excess (I'y,y,) via the Gibbs equation (i.e.,
Tyn = fﬁﬂ‘w&, where R, is the universal gas constant, T" is temper-
ature), which yields I'yn = Yun,00aCa/[RgT (aq + Cyo)]. Additionally, as-

suming the solid—fluid interfacial adsorption follows the Freundlich isotherm
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(ie, Ty = K fvaC'C]yV h where 7o is the surfactant excess at the fluid-solid
interfaces, K, and Ny, are fitting parameters with experimental measure-
ments), we can derive a Freundlich analog of the Szyszkowski equation for
vsn and vsw by plugging the Freundlich isotherm and Gibbs equation and
integrating with respect to the surfactant concentration,

R,TKy o
Nt o

Ny o

Ca
Ysao = Vsa,0 — / Ry TTs(C)dInC = ysa,0 — Ca™?, (4)
0

where I'y, is the surfactant excess at the interface between solid and wetting-
phase fluid (o« = w) or at the interface between solid and nonwetting-phase
fluid (o = nw). It is worth noting that Equations (3) and (4) predict mono-
tonic decreases in 7y, and 7, as surfactant concentration increases. In
practice, these interfacial tensions often level off above a characteristic con-
centration (e.g., the critical micelle concentration). Capturing this behavior
requires modified expressions (e.g., asymptotic forms), which are not consid-
ered in the present study.

Because 7,,, and 6—which collectively control the capillary pressure and
fluid configuration in the pore spaces—are functions of surfactant concen-
trations, the two-phase flow properties (i.e., the relationships among cap-
illary pressure, relative permeability, and fluid—fluid interfacial area, and
fluid saturation) will depend on the surfactant concentrations. We derive
the two-phase flow properties for surfactant-laden fluids using a bundle-of-
capillary-tubes model (Figure 2a—c). In particular, the model represents the
complex pore structures in a porous medium by a bundle of capillary tubes
with idealized geometries. Following this simplified representation, we can
derive two-phase flow properties for surfactant-laden fluids in an individual
pore of a porous medium and upscale the individual-pore relationships for

the porous medium with an arbitrary pore size distribution. The specific
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procedures are explained in the following sections
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(b) c
Two-phase fluid flow properties
(e.g., capillary pressure-saturation curve)
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Figure 2: A upscaling workflow to bridge pore-scale physics of coupled two-phase flow and

Capillary pressure ( p°)

surfactant /PFAS transport into a Darcy-scale modeling framework. The workflow consists
of four steps: (a) Compute the configuration of the wetting and nonwetting fluids in an an-
gular corner for a given capillary pressure with or without the presence of surfactant/PFAS
in the fluids. Equilateral triangular tubes are used as examples. (b) Compute the con-
figuration of the wetting and nonwetting fluids in a bundle of capillary tubes for a given
capillary pressure. (c) Apply the bundle-of-capillary-tubes model to derive two-phase flow
properties (e.g., capillary pressure, relative permeability, and fluid-fluid interfacial area
vs. fluid saturation curves) for a porous medium. The capillary pressure vs. wetting-phase
fluid saturation curve is used as an example. (d) Couple the new two-phase flow properties
into Darcy-scale transient two-phase flow and surfactant/PFAS transport models. Note
that a nanometer-scale thin wetting-phase fluid film (referred to as “precursor film”) may
form on partially-wet surfaces, while a macroscopic thin wetting-phase fluid film (thicker
than precursor film) will form on completely-wet surfaces. Due to the small film thickness,

the thin films are not shown in Panels (a) and (b).

2.2. Two-phase flow properties in a pore with varying geometries

We first derive the two-phase flow properties for surfactant-laden fluids
in an individual pore with idealized geometries (e.g., cylindrical, square, and

triangular tubes).
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2.2.1. Capillary pressure

We start from a pore that is saturated by the wetting-phase fluid and
is connected to a reservoir of a nonwetting-phase fluid. As we increase the
reservoir pressure, the nonwetting-phase fluid will invade the pore when the
pressure difference between nonwetting- and wetting-phase fluids (i.e., the
capillary pressure p¢) exceeds a threshold (referred to as “critical capillary
pressure pS,” hereafter). In a cylindrical pore, p¢,. is given by (Dullien, 2012)

Y €OS 0
o, = 2l (5)
where R is the radius of the circular cross-section of the cylindrical pore. In
an angular pore, p&,. is assumed equal to the p® where the fluid-fluid interfaces

meet in the angular pore, which is given by

9
P = (6)
Tc

where 7. is the radius of curvature when the menisci meet and collapse at
the edges of the cross-sections of a pore. The expression of r. depends on
the pore geometries. In a square-tube pore, r. is given by (Chen et al., 2020)

_ Rsin(n/4)
"= Tsin(r/4 - 0)] @)

where R is the inscribed radius of the cross-section of the square-tube pore.

The 7. in a triangular-tube pore is given by

N, ( R(cot B; + cot 3;) )
o i,j§{1¥2?3} |sin(7/2 — B; — 0)|/sin B; + | sin(w/2 — B; — 0)|/sinB; )’
i

(8)
where 3; and B; refer to i’ and j half corner angles, respectively; R is the
inscribed radius of the cross-section of the triangular-tube pore.

When p¢ < p¢. in a pore, the pore is saturated by the wetting-phase

fluid. Once p© exceeds p¢,., the nonwetting-phase fluid invades the pore. The

10
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wetting-phase fluid will either reside at the corners of angular pores (referred
to as “corner” fluid hereafter) or form thin fluid films on the solid surfaces
not covered by bulk or corner fluids. Two types of thin fluid films may
form. In a partially-wet pore, the wetting-phase fluid may form a nanometer-
scale thin film on the surface (referred to as “precursor” film hereafter) due
to surface adsorption, capillary condensation, surface roughness, or surface
heterogeneity. In a completely wet pore, the wetting-phase fluid will spread
on the surface and form a macroscopic thin film (referred to as “macroscopic”
film hereafter) that is thicker than the precursor film. Because the films
are often extremely thin, their volumes are almost negligible (if they exist)
compared with the total fluid volume, we neglect their contribution to the
overall saturation. Accordingly, the wetting-phase fluid saturation in an
invaded cylindrical pore is assumed to be zero, while that in an invaded
angular pore is given by
v,

S ————————
N3 g
R2%". 7 cot 3

(9)

where 7 is the radius of meniscus curvature given by r = v, /p°¢, N3 is the
number of corners of the cross-section of the angular pore (e.g., N3 =3 in a
triangular-tube pore and Ng = 4 in a square-tube pore), §; is the half-corner
angle, and A, is the dimensionless cross-sectional area of a pore with r =1

and A, is given by

Ng .
- Z /2 —p;— 0
Ac= = [Sm( /sin Bz'ﬂ ) cos0 = /2 == 0] o

The nonwetting-phase fluid saturation is given by

Spw = 1 — Sy. (11)

11
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2.2.2. Relative permeability
If a pore is saturated by a fluid, the permeability is given by (Patzek,
2001; Patzek and Kristensen, 2001)

ko = nGAZ, (12)

where 7 is the corrector varying with pore geometry (n = 0.5,0.5623, or 0.6
for cylindrical, square-tube, and equal-lateral triangular-tube pores, respec-
tively), G is the shape factor of the pore cross-section (i.e., the area divided
by perimeter square), A, is the area of fluid « in the cross-section of a pore,
and « indicates the fluid of interest (i.e., @ = w indicates the wetting-phase
fluid, while & = nw indicates the nonwetting-phase fluid).

If two fluids coexist in a pore, the wetting-phase fluid will reside either
as thin films in cylindrical pores or as corner fluid and thin films in angular
pores. We assume the thin film permeability is negligible. In a cylindrical
pore invaded by the nonwetting-phase fluid, the wetting-phase fluid perme-
ability is 0, while the nonwetting-phase fluid permeability is given by Equa-
tion (12). In an angular pore invaded by nonwetting-phase fluid, the corner
fluid contributes a non-negligible permeability, which is given by (Patzek,
2001)

Ng Ng
ky =2 Z kw,i =2 Z gw,ili,i? (13)
=1 =1

where k,,; is the wetting-phase fluid permeability in a half corner with an
angle of ;, ly,; is the wetting-phase meniscus-apex distance along the wall
at the " corner (i.e., l,,; = r|sin(n/2 — B; — 0)|/sinB;), and G, is the

dimensionless conductance of the wetting phase at the half corner (5;) with

a unit meniscus-apex distance (i.e., l,,; = 1). The nonwetting-phase fluid

12
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residing in the middle of the pore is given by (Qin and van Brummelen, 2019)
Enw = nGA2 82 (14)

2.2.8. Fluid—fluid interfacial area
In a cylindrical pore, fluid-fluid interfaces will arise from thin films. As-
suming the surfaces are smooth, the fluid—fluid interfacial area a,, in an

invaded cylindrical pore with a unit length is given by
Qyn = 2TR, (15)

where R is the radius of the pore that is invaded by nonwetting-phase fluid.
In an angular pore, fluid—fluid interfaces will arise from both corner water
and thin films. Because the thin-film fluid—fluid interfaces are comparable
or even larger than those associated with the corner water, they should be
accounted for in the calculation of a,,. Assuming the surfaces are smooth,
the fluid-fluid interfacial area a,,, in an angular pore with a unit length is

given by
Ng
i=1

where [, ; is the wetting-phase meniscus-apex distance along the wall at the

it" corner and can be calculated via Equation (13).

2.3. Two-phase flow properties in a porous medium

We then upscale the individual-pore two-phase flow properties for a
porous medium through a bundle-of-capillary-tubes model. Assuming the
pores in a porous medium share the same intrinsic contact angle (v,n,0) and
the pore sizes follow a distribution given by f(R) with R being the inradius

of the cross-section of a pore and f being the probability density of pores

13
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whose cross-sectional inradius is equal to R, the upscaled two-phase flow
properties in a porous medium can be computed via an integration over the
pore size distribution.

In particular, we compute the wetting-phase fluid saturation (S) as a
function of capillary pressure (P€) for a porous medium by integrating the
individual-pore saturation over the pore size distribution, which yields

_ JSB) - v(R) - s(R, P ywn) AR
[f(R)-v(R)dR )

S (17)

where v is the pore volume and s is computed given that p¢ = P°.
Similarly, we compute the relative permeability under a macroscopic cap-
illary pressure P¢ (and correspondingly saturation S) by taking the ratio
between the cumulative permeability for a fluid in each pore and the per-
meability for the entire porous medium under saturated conditions, which is

given by

[ J f(R) - ka(R, P, vn) dR
Tf(R) - ko(R)dR

where s is the saturation of the fluid of interest, which is a function of R,

(18)

P¢, and vy, for a given vun,0 and 6p. Finally, we can combine Equations
(17) and (18) to compute the k,-S curves.

Similarly, we compute the fluid—fluid interfacial area per unit pore volume
under a macroscopic capillary pressure P¢ (and correspondingly saturation
S) by integrating those in all pores, which yields

- [ f(R) - awn(R, P%,vyn) dR
o Tf(R)-Ao(R)dR

(19)

We can also combine Equations (17) and (19) to compute the A,,,-S curves.
While Equations (17-19) provide the upscaled two-phase flow properties
in porous media with arbitrary pore size distributions, simplified mathe-

matical representations are desired to couple them into two-phase flow and

14
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transport models. The following section introduces their simplified mathe-

matical representations under idealized conditions.

2.4. Simplified mathematical representations of two-phase flow properties

We consider a porous medium with uniform intrinsic contact angles, uni-
form pore geometries (i.e., cylinders, square tubes, or triangular tubes with
angle-angle similarity), and log-normal pore size distributions. Accordingly,
we can derive explicit expressions and closed-form functions for the two-phase

flow properties.

2.4.1. Explicit expressions
We drive the explicit functions for capillary pressure, relative permeabil-

ity, and fluid-fluid interfacial area in the porous medium.

Capillary pressure-saturation curve. We first derive the scaling function for
the capillary pressure in a porous medium with a log-normal pore size dis-
tribution. Suppose Ryax is the maximum size of the saturated pores that
are not invaded. Then the saturation is given by

A Jifmax f(R)R? AR + Acr? [ f(R)dR

S Ay [° f(R)R2dR

(20)

where A is the dimensionless cross-sectional area of a pore with R = 1
(i.e., Ay = 7 for a cylindrical pore, Ay = 4 for a square-tube pore, Ay =
Z?:l cot B; for a triangular-tube pore), A. is the area of the fluid in the
corner of an unsaturated angular pore and A. = 0 if the pore is represented
by a cylindrical tube, and f(R) is the probability density function (PDF) of

the pore sizes. f(R) is given by

f(R)

(IDRM)2) 7 (21)

1
= —exp|—
Rov2m P ( 202

15
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where 1 and o are the mean and standard deviation of the natural log of the
pore size R.
To evaluate S, we need to compute fORma" f(R)R*dR and [7° f(R)dR

from the following equation,

RITJ‘dX 2
/ FR)R™ R = w+bno g <lanax— (4 + no ))’
0

g

In Rinax — (1 + mr?))] 7 (22)

/ F(R)R™ dR = "+37°7" . [1 — P (
g

where n denotes the exponent (power) of R within the integrand, and ® is

the cumulative distribution function of the standard normal distribution.

Relative permeability-saturation curve. The wetting-phase relative perme-
ability is given by
RH!&X N ~
nGAZ [Fm f(R)RY AR + (2 S gl,iz;{i) J5 f(R)dR
nGAZ [° f(R)R*dR
while that of the non-wetting phase is given by

rw — )

A [ F(R)R*AR = 2A0Acr? [ f(R)R?* AR+ AZr* [ f(R)dR

kT nw —
! A2 > f R)R4 dR
(24)

where ["* f(R)R*R, [ f(R)AR, [7° f(R)R?dR,and [0 f(R)R'dR
are given by Equation (22)

Fluid-fluid interfacial area-saturation curve. Finally, we can compute the
specific fluid-fluid interfacial area (i.e., the fluid-fluid interfacial area nor-

malized by the total pore volume) for cylindrical tubes by

27 f;fmx f(R)RdR (25)
T A 5T (BB AR
and that for angular tubes by
X (5n = 25200 s Jix, FOR) AR+ 2N [ f(R)RAR o)
o A fo R)R?dR ’
16



OCoOoO~NOOPr,WNE

DU NUNUCUIOUIAORNANRNMARNARNARNDNWWWWRWRWWRWWRNNRNNRNNNNNNRPRRRERRRRRRPR
ARRANPRPOOONOITRWNPRPOOONDIRNRONROOONONERONROOCONNONRWNROOONOUNWNRO

293

294

295

296

297

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

where [° f(R)dR and [7° f(R)RdR are given by Equation (22).
Equations (20) and (23-26) provide the explicit expressions for the two-
phase flow properties in porous media with a uniform wettability, uniform

pore geometry, and lognormal pore size distribution.

2.4.2. Closed-form functions

The explicit expressions are given as functions of the cumulative nor-
mal distribution functions. We can approximate the cumulative normal
distribution functions by closed-form functions such as a logistic function
®(z) = 1/[1 + exp(—1.702x)]. This approximation allows for obtaining
closed-form functions for the upscaled two-phase flow properties and con-

veniently coupling them into transient two-phase flow models.

2.5. Coupled Darcy-scale two-phase flow and surfactant/PFAS transport model

We introduce the transient two-phase flow and surfactant transport mod-
els that couple the new two-phase flow properties, as well as the numerical

algorithm for solving the model.

2.5.1. Two-phase flow model

We describe the two-phase flow by an extended two-phase Darcy model,
0S,,
V- -q.=0 27

where g, = fkhakou;l -V (Pa — pag?z), kro are computed via Equations
(23-24), ko is the absolute permeability, P, is the pressure of « phase, P,
is constrained by P, — P, = P¢ with P° being given by Equation (20), z is

the spatial coordinate (assuming positive downward).

17
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2.5.2. Surfactant and PFAS transport model

The surfactants can dissolve in the fluids, migrate with the fluid flow via
advection and dispersion, and adsorb onto or desorb from the fluid—fluid and
fluid—solid interfaces. We consider a single-component surfactant system and
instantaneous interfacial adsorption. Subsequently, the governing equation

for surfactant transport is given by

TR [ ot v

(qaCa — §Sa D VCy) | =0,
) (28)
where D,, is the dispersion coefficient in the « (i.e., Do = 7Do o+ Lalqa/®/Sal,
where 7 is the tortuosity which can be approximated as 7 = (¢Sq)"/3/$>
(Millington and Quirk, 1961), Dg is the molecular diffusion coefficient in
free a phase, L, is the longitudinal dispersivity, I'y,, and [y, are the surfac-
tant excess at fluid—fluid and solid—fluid interfaces, respectively. I'y,, and Iy,

are given by the Langmuir and Freundlich isotherms as discussed in Section

2.1.

2.5.3. Numerical algorithm

Equations (27) and (28) represent the two-phase flow and surfactant
transport models. The model has three primary unknown variables: P,, P¢
(or Syu), and Cy, where a = w or nw. They can be solved with well-imposed
initial and boundary conditions. We solve the unknown variables using a
backward-Euler finite difference method. At each time step, the result-
ing nonlinear discretized equations are solved iteratively using the Newton-
Raphson method. The convergence of the iterations is accepted when the
Leo-norm of the residuals and the Lo,-norm of the updates of the primary

variables (e.g., Py, P¢, and C,) are smaller than certain thresholds.

18
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3. Results and analysis

We apply the bundle-of-capillary-tubes model in Section 2 to analyze the
impact of fluid-fluid interfacial tension and pore geometry on two-phase flow
properties in porous media (Section 3.1). Then we use the model as a ref-
erence to evaluate the accuracy of the explicit expressions and closed-form
functions of the upscaled two-phase flow properties (Section 3.2). Finally,
we demonstrate an example application of a two-phase fluid flow and sur-
factant transport model that incorporates the newly-derived two-phase flow

properties (Section 3.3).

3.1. Impact of interfacial tension and pore geometry on two-phase flow prop-
erties

3.1.1. Numerical experiment design

We model the impact of interfacial tension and pore geometry on two-
phase flow properties using a porous medium whose pore sizes follow a log-
normal distribution, with a mean pore size of y = 100 pm and a normalized
standard deviation of 0 = 0.3 (Figure B.1a). For illustration, we consider
a near neutral-wet surface, characterized by an intrinsic contact angle of
Ay = 80°. We assume that the solid-phase adsorption of surfactants and the
alteration of solid surface chemistry are weak and negligible (i.e., Ysn = Ysn,0
and Yew = Ysw,0, and consequently Yun® = Yun,060). This assumption is
adopted to focus on the effects of fluid—fluid interfacial tension and pore ge-
ometry, rather than reflecting a model limitation, since the current model ac-
counts for solid-phase adsorption and its impact on wettability (Section 2.1).
We simulate six 7y,,, values for cylindrical pores and nine ~,,, values for an-
gular pores, ensuring that the selected values correspond to the entire range

of contact angles, i.e., 0 < 6§ < 6y (Figures 3-5). Note that 7, is also
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a proxy of the surfactant effect, i.e., a smaller ~,,, corresponds to a more

interfacially active surfactant and/or a higher surfactant concentration.

3.1.2. Porous media with cylindrical pores

We first analyze the impact of 7,, on the two-phase flow properties in
the porous medium with cylindrical pores. The results suggest a piecewise
linear scaling of the capillary pressure—saturation (P°=S,,) curves with 7,

(Figure 3a-b), which falls in the following two distinct regimes:

e Regime I: vyyun > Yunocosby (ie., § > 0), corresponding to less in-
terfacially active surfactants and/or lower surfactant concentrations.
Because 7y, cos @ is constant in this regime and P¢ scales linearly with
Ywn c0s 0 (Equation 5), the P°-S,, curves remain the same even 7,

varies (Figure 3a).

e Regime II: vyp < yynocosby (ie., 8 = 0), corresponding to more
interfacially active surfactants and/or higher surfactant concentrations.
Because cosf = 1 in this regime, the P°-S, curves become linearly

scaled with 7, (Figure 3b).

In contrast, the relative permeability—saturation (k,—S,,) and fluid—fluid in-
terfacial area—saturation (Ay,—Sw) curves are the same for all 7, (Figure
3c—d). In a bundle of cylindrical tubes, each tube will be occupied by one
bulk fluid and a thin precursor film of the other fluid due to the absence of
corner fluids. To reach a certain S, the partitioning of fluids across tubes is
unique. Therefore, k, and A,,, are kept the same at the same S,, regardless

of the varying vyn.
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Figure 3: Impact of interfacial tension (v.») on the (a—b) capillary pressure—saturation
curves, (c) relative permeability—saturation curves, (d) fluid—fluid interfacial area—
saturation curves in a porous medium with cylindrical pores. A near neutral-wet condition
(e.g., an intrinsic contact angle 6y of 80°) is used as an illustrative example. Two 7y
ranges are modeled: (1) A range within which the contact angles (f) are greater than or
near 0, and (2) A range within which § = 0. Because the relative permeability—saturation
curves are the same in all cases, we only show those for contact angles greater than 0. In
the figure, ywn,o refers to the interfacial tension for surfactant-free fluids. Note that ~yun
is a proxy of the surfactant effect, i.e., a smaller v, corresponds to a more interfacially

active surfactant and/or a higher surfactant concentration.

3.1.8. Porous media with angular pores
In porous media containing square and equilateral triangular tubes, the

impact of 7, on two-phase flow properties becomes nonmonotonic and non-
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linear. In particular, the impact of v,,, on the P°-S,, curves can be charac-

terized by the following three distinct regimes:

e Regime I: vyn > Yun,0cosby/ cos(m/2 — ), corresponding to less in-
terfacially active surfactants and/or lower surfactant concentrations.
In this regime, the fluid menisci are convex and the radius of menis-
cus curvature (r) increases with the decrease of 7yy,. Since P¢ scales
with 7/r, the decreasing v, and increasing r lead to a decrease of P°.
Consequently, the P°-S,, curve shifts downwards with the decrease of

~Ywn, 1.€., the increase of surfactant concentration (Figures 4a and b5a).

e Regime II: yy,0 c0s 0y < Yuwn < Ywn,0cos b/ cos(m/2 —3), correspond-
ing to moderately interfacially active surfactants and/or intermediate
surfactant concentrations. In this regime, the menisci become con-
cave and r begins to decrease with 7., (Figures 4b and 5b). Because
P¢ & yn/r and vy, decreases much less significant than r, the de-
crease of v, will increase the P° at the same S, and thus shift the

P¢-S,, curve upwards (Figures 4b and 5b).

e Regime III: vyn < 9wn,0cosbp, corresponding to more interfacially
active surfactants and/or higher surfactant concentrations. The P°-
Sy curve switches back to a downwards shifting mode with the further
decrease of 7, given that 6§ = 0 and thus P¢-S,, curves scale linearly

with 7y, (Figures 4c and 5c¢).

In contrast to P¢-S,, curves, k,—S,, and A,,—S, curves present much less
significant variations with 7, (Figure 4d—i). This is because k, and A, are
mainly controlled by the fluid menisci sizes (i.e., the fluid perimeter and/or

area in the cross-section of each unsaturated pore), which are much less
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Figure 4: Impact of interfacial tension (v.n) on (a—c) capillary pressure—saturation
curves, (e—f) relative permeability—saturation curves, and (g—i) fluid-fluid interfacial area—
saturation curves in a porous medium with square-tube pores. A near neutral-wet condi-
tion (e.g., an intrinsic contact angle 6y of 80°) is used as an illustrative example. Three
~Ywn ranges are examined: (1) A range within which the contact angles () are greater than
0 and are equal or greater than 7/2 — 3, where 8 is the half corner angle and 8 = 7/4
in the square tubes (left column), (2) A range where 0 < 0 < /2 — 8 (middle column),
and (3) A range where 6 = 0 (right column). In the figure, vuwn,o refers to the interfacial
tension for surfactant-free fluids. Note that 7., is a proxy of the surfactant effect, i.e., a
smaller v,,, corresponds to a more interfacially active surfactant and/or a higher surfac-

tant concentration.

sensitive to the v,,-dependent convex vs. concave shapes of fluid menisci

than r (Equations (13-14) and (16)).
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Figure 5: Impact of interfacial tension (v.n) on (a—c) capillary pressure—saturation
curves, (e—f) relative permeability—saturation curves, and (g—i) fluid-fluid interfacial area—
saturation curves in a porous medium with triangular-tube pores. A near neutral-wet
condition (e.g., an intrinsic contact angle 6y of 80°) is used as an illustrative example.
Three 7y, ranges are examined: (1) A range within which the contact angles (6) are
greater than 0 and are equal or greater than /2 — 8, where 8 is the half corner an-
gle and 8 = 7/6 in the equilateral triangular tubes (left column), (2) A range where
0 <0 < m/2—p (middle column), and (3) A range where § = 0 (right column). In the
figure, vuwn,o refers to the interfacial tension for surfactant-free fluids. Note that v, is a
proxy of the surfactant effect, i.e., a smaller v,,, corresponds to a more interfacially active

surfactant and/or a higher surfactant concentration.

The v,n-dependent two-phase flow properties can strongly influence two-

phase flow and surfactant transport behaviors in porous media with vary-
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ing pore geometries. To capture these effects quantitatively, we incorporate
the new properties into Darcy-scale transient two-phase flow and surfactant

transport models (Section 2.5).

3.2. Validity and accuracy of simplified mathematical representations for
two-phase flow properties

3.2.1. Numerical experiment design

To couple the ~,,,-dependent two-phase flow properties into Darcy-scale
models, we have derived their explicit expressions and closed-form functions
in Section 2.4. In this section, we evaluate the validity and accuracy of
the explicit expressions and closed-form functions to ensure their reliability.
This is achieved by comparing their predictions with those from the bundle-
of-capillary-tubes model. Comparisons are performed for the three pore ge-
ometries at three representative surfactant concentrations (i.e., v, values).
Similarly, v,y is used as a proxy for the surfactant concentration—a larger
Ywn corresponds to a lower surfactant concentration. Here, the ~,, val-
ues are chosen to capture the aforementioned two or three different regimes
where the dependence of two-phase flow properties on pore annularity and
~Ywn €xhibits distinct behaviors (Section 3.1). For cylindrical pores, we use
¥/Ywn,0 = 0.22, 0.10, and 0.05, corresponding to # = 40°, 0°, and 0°. For
square-tube pores, we use v/vun,0 = 0.41, 0.18, and 0.05, corresponding to
0 = 65°, 20°, and 0°. For equilateral triangular pores, we use v/Yyn,0 = 0.51,
0.25, and 0.05, corresponding to 6 = 70°, 45°, and 0° (Note that angles are
expressed in degrees (°) hereafter, unless otherwise specified). Two pore size
distributions are examined: a more uniform pore size distribution where the
mean and normalized standard deviation of the pore sizes are respectively

100 pm and 0.3 (i.e., the same as that in Section 3.1), and a wider pore size
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distribution where the mean and normalized standard deviation of the pore

sizes are respectively 100 gm and 0.5 (Figure B.1b).

3.2.2. Validation of explicit expressions and closed-form functions: Full log-
normal pore size distribution

As shown in Figure 6, the explicit expressions fully overlap with the
results from the bundle-of-capillary-tubes model in all the cases, which ver-
ifies the mathematical consistency between the explicit expressions and the
bundle-of-capillary-tubes model. Similarly, the closed-form functions—which
use a logistic function (i.e., 1/[1+exp(—1.702z)]) to approximate the cumu-
lative normal distribution function (i.e., ®(x)) in the explicit expressions—
align excellently with the bundle-of-capillary-tubes model. We observe a
slight deviation in the fluid-fluid interfacial area—saturation (A, —S,) curves
at S, — 1. At S, — 1, most pores are unsaturated. The A,,, approximately
scale with 1 — ®(z) where = (In Rypax — pt)/0 and Rpax — 00 with Rpax
being the maximum saturated pore size (Equations 24-26). Because the lo-
gistic function has a larger error at * — oo, k., and A, present a larger
error at Rpyax — 00 (i.e., Sy — 1). In contrast, A,y is near zero, and the
corresponding fluid—fluid interfacial adsorption of surfactant is expected to
be minor.

When the standard deviation of pore sizes increases to 0.5, both the ex-
plicit expressions and closed-form functions notably deviate from the bundle-
of-capillary-tubes model (Figure D.3). This discrepancy is because the ex-
plicit expressions and closed-form functions cover the full range of a log-
normal pore size distribution, while the bundle-of-capillary-tubes model can
only approximate the lognormal pore size distribution by a truncated log-

normal distribution.
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Figure 6: Evaluations on the explicit expressions and closed-form functions for (a—c)
capillary pressure-saturation curves, (e—f) relative permeability—saturation curves, and (g—
h) fluid-fluid interfacial area—saturation curves using the bundle-of-capillary-tubes model
as a benchmark. Porous media with cylindrical, square-tube, and equilateral triangular-
tube pores are examined. A near neutral-wet condition (e.g., an intrinsic contact angle of
80°) is used as an example. We present the curves at three example interfacial tensions
(Ywn ) for each pore geometry—i.e., Yuwn/Ywn,0 = 0.22, 0.1, and 0.05 (i.e., 6 = 40°, 0° and
0°) for cylindrical pores; Ywn/Ywn,0 = 0.41, 0.18, and 0.05 (i.e., § = 65°, 20° and 0°) for
square-tube pores; and Ywn/Ywn,0 = 0.51, 0.25, and 0.05 (i.e., § = 70°, 45° and 0°) for
equilateral triangular-tube pores. The pore sizes follow a full lognormal distribution. The
mean and normalized standard deviation of the pore sizes are respectively 100 pm and

0.3.
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Figure 7: Evaluations on the explicit expressions and closed-form functions for (a—c)
capillary pressure-saturation curves, (e—f) relative permeability—saturation curves, and (g—
h) fluid-fluid interfacial area—saturation curves using the bundle-of-capillary-tubes model
as a benchmark. Porous media with cylindrical, square-tube, and equilateral triangular-
tube pores are examined. A near neutral-wet condition (e.g., an intrinsic contact angle of
80°) is used as an example. We present the curves at three example interfacial tensions
(Ywn) for each pore geometry—i.e., Yuwn/Ywn,0 = 0.22, 0.1, and 0.05 (i.e., § = 40°, 0°
and 0°) for cylindrical pores; Ywn/Ywn,0 = 0.41, 0.18, and 0.05 (i.e., § = 65°, 20° and
0°) for square-tube pores; and vwn/Ywn,0 = 0.51, 0.25, and 0.05 (i.e., § = 70°, 45° and
0°) for equilateral triangular-tube pores. The pore sizes follow a truncated lognormal
distribution. The mean and normalized standard deviation of the pore sizes are 100 pm
and 0.5, respectively; while the minimum and maximum pore sizes are 5 pm and 500 pm,

respectively.
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3.2.8. Validation of explicit expressions and closed-form functions: Trun-
cated lognormal pore size distribution

To address the above discrepancy, we use a truncated lognormal pore
size distribution (where the minimum and maximum pore sizes are 5 ym and
500 pm, respectively) to derive the closed-explicit expression and closed-form
functions following the same procedure in Section 2.4. As shown in Figure
7, the explicit expressions overlap with the bundle-of-capillary-tubes model
that applies the same truncated lognormal pore size distribution, verifying
the mathematical consistency and accuracy between the two models. The
closed-form functions have minor errors in calculating the capillary pressure
and fluid-fluid interfacial area—saturation curves. However, the calculated
relative permeability—saturation curves notably deviate from the reference
curves, especially at S, — 1 where only a smaller amount of large pores are
invaded by the nonwetting-phase fluid. The reason for this divination is the
following. At ¢ = 0.5, the proportion of larger pores is greater than that at
o = 0.3. The invaded larger pores control the nonwetting-phase permeability
and contribute a significant amount of wetting-phase permeability (kp, o
R*). Additionally, the logistic function (i.e., 1/[1 + exp(—1.702x)]) makes
larger errors at smaller or larger . Collectively, the greater number of larger
pores and a more significant error of the logistic function lead to a notable
deviation.

Consequently, closed-formed functions are suggested for the capillary
pressure—saturation curves of the two-phase flow models, while explicit ex-
pressions are recommended for the relative permeability—saturation curves.
Either closed-form functions or explicit expressions can be employed for the

interfacial area—saturation curves of the surfactant transport models, since
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the interfacial area only enters the transport equation through surfactant

mass balance and does not critically affect model structure.

3.8. Modeling coupled unsaturated water flow and PFAS transport in soils

The explicit expressions and closed-form functions are coupled into a
Darcy-scale two-phase flow and surfactant transport (Section 2.5). Further-
more, the model is used to examine the impact of pore angularity and sur-
factant concentration on the coupled transient flow and transport processes
for an example application, i.e., PFAS transport and leaching in soils. In
particular, we simulate unsaturated water flow and PFAS transport through
a vertical homogeneous soil column, which resembles a miscible displacement
laboratory experiment (i.e., a laboratory experiment in which water contain-
ing a dissolved solute is injected into a soil column under constant infiltration
conditions). The model employs the closed-form functions for the capillary
pressure—saturation (P°-S,,) curves, and the explicit expressions for the rel-
ative permeability (k) and fluid-fluid interfacial area—saturation (Aqp—Sy)
curves. The details in the modeling setup and simulation results are pre-

sented below.

3.3.1. Numerical experiment design

We simulate the unsaturated water flow and PFAS transport behavior
in the soil column using three versions of the model: (1) base case, which
turns off the fluid—fluid interfacial adsorption of PFAS and its impact on
interfacial tension (i.e., Iy, = 0 and 7y = 59, where Iy, is the air-water
interfacial excess, v is the surface tension for PFAS-laden water, g is the
surface tension for PFAS-free water); (2) intermediate case, which turns on

the fluid—fluid interfacial adsorption while keeping a constant v (i.e., i.e.,
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Figure 8: Impact of pore annularity, PFOS concentration, and intrinsic surface wettability
on PFOS breakthrough curves in an unsaturated soil column. We consider two surface
wettability: (a) completely water-wet (6o = 0°), (b) partially water-wet (6o = 30°), and (c)
weakly water-wet (fp = 80°). For each surface wettability, we compare the PFOS break-
through curves for three pore geometries: cylindrical tubes (denoted by “Cyl”), square
tubes (denoted by “Sq”), and triangular tubes (denoted by “Tri”). The breakthrough
curves are plotted on a log scale for both = and y axes. On the z-axis, the time is nondi-
mensionalized by L/q, where L is the length of the soil column and ¢ is the infiltration

rate.

Fow = KowC and v = 7); (3) full model, which accounts for both the
fluid—fluid interfacial adsorption of PFAS and its impact on v (i.e., i.e.,
Fow = KawC and v = [l —bln(1l 4+ C/a)]). Each model is applied to
porous media with different pore geometries (cylindrical, square-tube, and
equilateral triangular-tube) and intrinsic contact angles (6y = 0°, 30°, and

80°). We use PFOS as an example PFAS substance and simulate two repre-

sentative aqueous concentrations (10 mg/L and 100 mg/L), yielding 18 total
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simulations.

All simulations begin with a constant infiltration of PFOS-free water into
a 10 cm-long dry soil column from the inlet (top), while the outlet (bottom) is
maintained under free drainage. A small water saturation (0.001) is used to
initiate the infiltration simulation. After the infiltration reaches the steady
state, a pulse of PFAS solution (two pore volumes) is introduced at the same
infiltration rate, with a zero concentration gradient imposed at the outlet.
The parameters used for water flow and PFOS transport are summarized in
the following: the infiltration rate is 0.42cm/h, ¢ = 0.395cm?/cm3, kg =
1.19 x 1078 cm?, Dy = 5.4 x 107%cm? /s, L, = 34.96cm, o = 0.072N/m,
R, =8.314J/K/mol, T = 293.15K, a = 4x1073 mol/m?, b = 0.107.

3.8.2. Unsaturated water flow and PFAS transport in soils

For each simulation, we compute the breakthrough curves at the outlet
(Figure 8). As expected, PFOS shows significant retention due to adsorption
at the air-water interface. However, the extent of retention varies strongly
with pore geometry. The retardation factors (defined as the ratio of solute
transport velocity to pore-water velocity) are approximately 306.5 for cylin-
drical pores, 6.6 for square-tube pores, and 3.0 for triangular-tube pores.
This variation arises because pore geometry controls relative permeability
and, in turn, water saturation under constant infiltration. Under steady
infiltration of surfactant-free water, pore angularity alone leads to an order-
of-magnitude difference in water saturation. As a result, the air-water in-
terfacial areas differ markedly across geometries (134.4cm~! for cylindrical
pores, 48.6cm ™! for square-tube pores, and 24.8cm™! for triangular-tube
pores), which directly translates into an order-of-magnitude difference in re-

tardation factors. These results highlight the critical role of pore geometry
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in shaping two-phase flow properties—particularly relative permeability and
air-water interfacial area—and thereby governing the transport of surface-
active solutes such as PFAS.

As shown in Figure 8a—c, the models with and without accounting for
interfacial tension variations produce nearly identical breakthrough curves
for all three pore geometries at the lower concentration (10mg/L), where the
interfacial tension remains essentially unchanged. At the higher concentra-
tion (100 mg/L), the interfacial tension variations lead to a slight surfactant-
induced flow and a slightly weaker retention (Figure 8d—f).

A close inspection of the soil column with cylindrical-tube pores and a
contact angle of 30° shows that both interfacial tension and contact angle
vary substantially in space and time. For an intrinsic contact angle of 30°,
the simulations show that the interfacial tension decreases by up to 20% and
the contact angle by as much as 30° (Figure 9c—d). These changes lead to
a 30% reduction in water saturation in the upper soil and a 0.7% shift in
water pressure head therein (Figure 9a-b). The fluctuations occur mainly in
the top soils due to the strong retention and the resulting slower downward
migration and spreading of PFOS across the soil column. Nevertheless, the
greater relative permeability of cylindrical pores results in a lower water sat-
uration and a larger air-water interfacial area at the same infiltration rate.
This enlarged interfacial area promotes strong PFOS adsorption (Figure 9e),
which in turn damps the fluctuations in water saturation and PFOS con-
centration induced by surfactant-driven flow. Therefore, the breakthrough
curves only show a minor difference even at the higher concentration.

In soil columns with angular pores and an intrinsic contact angle of 30°
(Figure 9h-i, m—n), the reductions in interfacial tension (<10%) and contact

angle (< 15°) are much smaller. Correspondingly, water saturation varies
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Figure 9: Temporal and spatial variations of water saturation (S,), water pressure head
(hw), contact angle (0), interfacial tension (v, which is normalized by the interfacial tension
for pure water 7o), and aqueous PFOS concentration (Coq) in an unsaturated soil column.
We present the simulation results for all three pore geometries—including cylindrical tubes
(top row), square tubes (middle row), and triangular tubes (bottom row)—at the PFOS
concentration of 100 mg/L under partially water-wet condition (o = 30°). We present the
profiles from 0 to 4 hours at an interval of 0.4 hour for the porous medium with cylindrical
pores, and those from 0 to 2hours at an interval of 0.2 hour for the porous medium with
angular pores. The lines become progressively darker to represent advancing simulation

time.

by under 12% (Figure 9f&k). However, the water pressure head changes are
more pronounced (about 44% for square-tube pores and 20% for triangular-
tube pores) due to the weaker retention and thus faster downward migration
and spreading of PFOS in the column (Figure 9g&l). To assess the role

of the water pressure head changes, we compared the water pressure head
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gradient with the gravitational force gradient across the entire domain. The
computed gradients range from 0.08 to 0.12, which is much smaller than the
gravitational gradient (0h/0z = 1, where h is the hydraulic head). Thus,
the spatial variations in PFOS concentration, interfacial tension, and con-
tact angle exert little influence on PFOS transport under these simulated
conditions (Figure 9j&o).

In soils with intrinsic contact angles of 0° and 80°, the temporal and spa-
tial variations of water saturation, pressure head, and contact angle slightly
deviate from each other (Figures E.4 and E.5), due to the distinct depen-
dence of capillary pressure—saturation curves on interfacial tension at differ-
ent intrinsic contact angles. However, because of the insignificant surfactant-
induced flow and strong retention, the PFOS concentration profiles present
similar patterns as those in soils with an intrinsic contact angle of 30° (Fig-
ures E.4 and E.5). Correspondingly, the breakthrough curves are similar for

different intrinsic contact angles, even at a higher concentration (100 mg/L).

4. Discussion

We present an upscaling workflow for simulating the coupled two-phase
surfactant /PFAS-laden fluid flow and surfactant/PFAS transport in porous
media with angular pores. The workflow derives REV-scale two-phase flow
properties directly from pore-scale structural information (including intrinsic
surface wettability, pore geometry, and pore-size distribution) and surfactant
chemistry conditions. These REV-scale properties are then coupled into a
transient two-phase flow and surfactant/PFAS transport model, enabling
prediction of complex flow and transport behaviors across a wide range of

porous media using only a minimal set of pore-scale structural parameters.
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The approach offers a practical tool for applications such as contaminant
transport and remediation (e.g., NAPL and PFAS) in soils and groundwater
(e.g., Al-Raoush, 2009; Guo et al., 2020; Maroli et al., 2024).

4.1. New scaling functions for two-phase flow properties of surfactant-laden

fluids in porous media

Through modeling investigations, we identify new scaling functions for
the two-phase flow properties of surfactant-laden fluids in porous media, dis-
tinct from the classic Leverett J-function (Leverett, 1941) and its modified
forms (e.g., Rose and Bruce, 1949; Lan et al., 2025). The Leverett J-type
scalings extrapolate the capillary pressure-saturation (P°-S,,) curve of a
given rock and surfactant-free fluid system to other rocks or fluid pairs by
normalizing with 1/(yyn,0cos8y) or 1/(vuwn,0f(00)), where vy is the in-
terfacial tension for surfactant-free fluids, 6y is the intrinsic contact angle,
and f is a function of 6y. For surfactant-laden fluids, a common empirical
extension is to substitute yuno and 6y with v, and 6, where 7, and 0
are treated as independent empirical or semi-empirical functions of surfac-
tant type and concentration (e.g., Bhattacharjee et al., 2025). However, as
implied by the Young—Dupré equation, ., and € are coupled. Our scaling
functions, derived mechanistically from the Young—Dupré relation and the
bundle-of-capillary-tubes model, take into account this coupling effect. They
yield two-phase flow properties only depending on 7y, (i.e., surfactant types
and concentrations) and pore structures.

Additionally, most previous studies adopted a linear Leverett J-type scal-
ing of the P°-S,, curve and assumed invariant K,—S,, and A,,—S, curves.
In contrast, our scaling functions predict a piecewise linear relationship be-

tween P¢—S,, and 7, in porous media with cylindrical pores, and a mono-
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tonic, nonlinear relationship in porous media with angular pores. Further-
more, the relative permeability—saturation (K,—S,,) and fluid—fluid interfa-
cial area—saturation (A.,—Sy) curves both vary with 7,,. The new scaling
functions may capture more realistic two-phase flow behaviors of surfactant-
laden fluids in porous media with diverse geometries. Incorporating these
new properties into Darcy-scale models is essential for accurately predict-
ing transient two-phase flow and contaminant transport in porous media,

particularly under conditions where surfactant effects are significant.

4.2. Ezxperimental validation of the proposed scaling functions

To validate the proposed scaling functions, we compare the model predic-
tions against experimentally measured capillary pressure—saturation curves
of surfactant(Triton X-100)-laden fluids in an F-70 Ottawa sand (Kara-
gunduz et al., 2001). The comparison involves two steps: (1) We com-
pute the pore size distribution using the van Genuchten (VG) curve fitting
best with the experimentally measured capillary pressure—saturation curve
of surfactant-free fluids. Specifically, we can compute the cumulative density
function of the pore sizes via Fyv(Rmax) = Sw,va(P°) = Sw,va (P (Rmax))
where Fy is the cumulative volume of pores whose sizes are below Ryax,
Swva(P€) is the VG model, P°(Rmax) is given by the bundle-of-capillary-
tubes model (Equation (17)) or its simplified expressions with v = 7 and
0 = 6y, and Rpax is the maximum pore size below which the pores re-

main fully occupied by the wetting-phase fluid. Consequently, the probabil-

. . o . . . dFy (Rmax
ity density function of the pore sizes is given by fy(Rmax) = % =
dS“’g’ﬁc(Pc) dlzéi?:x), where fy represents the volume of pores with radius

Ruax. We can divide fy by the volume of a single pore to yield the corre-

sponding pore count. (2) We predict the capillary pressure-saturation curves
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of surfactant-laden fluids using the derived pore size distribution and mea-
sured interfacial properties (v and €) on planar slides made of the same mate-
rial as that of the studied porous medium, and compare the predictions with
their corresponding experimentally measured capillary pressure—saturation
curves. To minimize the occurrence and influence of more complex two-
phase flow processes (e.g., trapping and hysteresis), the validation is done
using experimental measurements during primary drainage. The specifics

are provided below.

(a) 0 g/L (c) 0.15 g/L (b) 0.075 g/L
1 15FF 1571
5 Fitted VG (Karagunduz et al., 2001) 5 ] o Measured (Karagunduz et al., 2001) g o Measured (Karagunduz et al., 2001)
E ++ Bundle-of-capillary-tubes (Cy]) i Fitted VG (Karagunduz et al., 2001) it Fitted VG (Karagunduz et al., 2001)
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Figure 10: Experimental validation of the new scaling functions for two-phase flow proper-
ties of surfactant(Triton X-100)-laden fluids in an F-70 Ottawa sand (Karagunduz et al.,
2001). (a) Derivation of pore size distribution from the van Genuchten (VG) curve of
surfactant-free fluids and validation of bundle-of-capillary-tubes models using cylindrical
tubes (denoted by “Cyl”) or triangular tubes (denoted by “Tri”). (b—c) Validation of pre-
dicted capillary pressure—saturation curves for surfactant-laden fluids using the derived
pore size distribution at two Triton X-100 concentrations: 0.075g/L and 0.15g/L. The
predictions are provided by bundle-of-capillary-tubes models with three different pore ge-
ometries, including cylindrical tubes (denoted by “Cyl”), triangular tubes (denoted by
“Tri”), and a combination of cylindrical and triangular tubes (denoted by “Cyl + Tri”). All
VG curves were obtained by fitting with experimental data and the VG parameters were

reported by Karagunduz et al. (2001).

We use cylindrical and triangular tubes to approximate the rounded to

sub-angular pore spaces in the F-70 Ottawa sand (e.g., Bastidas, 2016). As
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shown in Figure 10a, the bundle-of-capillary-tubes models using the VG
curve-derived pore size distributions and measured interfacial properties (7o
and 6y, see Table F.1) accurately reproduce the experimental data-fitted
VG curve for surfactant-free fluids (Karagunduz et al., 2001), verifying the
theoretical derivation of pore size distributions. The same models are used
to predict the capillary pressure-saturation curves of surfactant-laden flu-
ids using measured interfacial properties (v and 6, see Table F.1) on quartz
slides at two concentrations (i.e., 0.075¢/L and 0.15g/L). We observe that
the model using cylindrical tubes consistently overestimates the reduction of
capillary pressure by surfactants, the one using triangular tubes shows the
opposite (Figure 10b—c). These deviations may be caused by the coexistence
of rounded and sub-angular pore spaces in the F-70 Ottawa sand. To account
for this phenomena, we further estimate the curve via a weighted average of
the two models, i.e., Sy (P€) = W - Sy,cp1(P€)+ (1 =W) - Sy 1vi (P€) where W
is the volume fraction of cylindrical pores, and the subscripts “Cyl” and “Tri”
represents the models using cylindrical and triangular tubes, respectively. In-
terestingly, the weighted average significantly improves the accuracy of the
predictions at a wide range of W (i.e., W = 0.55 ~ 1.00). For example,
with W = 0.65, the root mean square errors between the predictions and
measurements decrease from 0.128 (cylindrical tubes) and 0.104 (triangu-
lar tubes) to 0.079 (weighted average) at 0.075g/L, while decreasing from
0.040 (cylindrical tubes) and 0.126 (triangular tubes) to 0.028 (weighted av-
erage) at 0.15g/L. These errors are also close to the errors of the VG curves
that were best fitted to the measurements (0.059 at 0.075g/L and 0.020 at
0.15g/L). Both the error reduction and the good match validate the predic-
tive capability of the bundle-of-capillary-tubes models and the accuracy of

the new scaling functions.
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More importantly, the above analyses suggest that, through an appropri-
ate approximation of pore geometry and pore size distribution, the simplified
bundle-of-capillary-tubes models can provide good predictions for the capil-
lary pressure-saturation curves and potential other two-phase flow properties
of surfactant-laden fluids in real porous media using minimal experimental
measurements (i.e., capillary pressure-saturation curves of surfactant-free
fluids and interfacial properties of surfactant-laden fluids on planar slides of

the same solid materials).

4.8. Coupling of new two-phase flow properties into transient two-phase flow

and surfactant transport model

We acknowledge that many prior studies have derived two-phase flow
properties for surfactant-free fluids by accounting for factors such as thin
fluid films, pore geometry, surface wettability, and surface roughness (e.g.,
Tuller et al., 1999; Diamantopoulos and Durner, 2013; Bhattacharjee et al.,
2025), and have proposed explicit expressions or closed-form functions for
these properties (e.g., Diamantopoulos and Durner, 2015). However, to our
knowledge, these developments have rarely been carried through into tran-
sient two-phase flow and transport models, even for surfactant-free fluid
systems. This gap likely stems from the analytical complexity of the derived
relationships, the absence of simplified forms suitable for numerical imple-
mentation, and /or the additional challenges of coupling them with nonlinear
two-phase flow and transport processes.

Here, we for the first time demonstrate the feasibility of coupling the-
oretically derived properties for surfactant-laden fluids and their simplified
expressions into a transient two-phase flow and transport framework. The

coupled model is solved using either a fully implicit or a sequentially im-
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plicit scheme, with preliminary tests suggesting that the sequentially im-
plicit method offers superior numerical stability. While further investigation
is needed to address the mathematical complexity and to develop more ro-
bust numerical algorithms, our example simulations of unsaturated water
flow and PFAS (surfactant-like chemical) transport show that the model
successfully captures both water flow fluctuations and PFAS transport dy-
namics in unsaturated soils. These findings demonstrate that the approach
is not only theoretically sound but also practically feasible, paving the way
for broader applications in coupled two-phase flow and surfactant transport

systems

4.4. Implications for PFAS transport in vadose zone soils

Furthermore, the PFAS transport simulations show that PFAS migration
and retention in unsaturated soils are strongly governed by pore geometry.
Simulations under constant infiltration rates reveal sharp contrasts among
pore types: cylindrical pores yield retardation factors on the order of 300,
compared to 6.6 and 3.0 for square and triangular pores, respectively. This
variation arises primarily from differences in water saturation and interfacial
area under simulated infiltration conditions. Cylindrical pores maintain low
saturation and large interfacial areas, conditions favorable for strong PFOS
adsorption. In contrast, angular pores sustain higher saturation and smaller
interfacial areas, leading to weaker retention. These findings suggest that
soils dominated by cylindrical-like pores (if they exist) may act as long-
term PFAS reservoirs, whereas soils with more angular pores may facilitate
faster contaminant migration. This distinction highlights the importance
of considering pore geometry in predicting PFAS transport and designing

targeted remediation strategies.
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In contrast to pore geometry, the simulations indicate that surfactant-
induced flow has a subtle impact on PFAS (e.g., PFOS) transport. This
finding is consistent with miscible displacement experiments conducted with
both PFAS and non-PFAS surfactants at similar concentration levels (Brusseau
et al., 2007, 2015; El Ouni et al., 2021). At the field scale, however, the extent
of surfactant-induced flow and its influence on PFAS transport remains un-
settled. For example, Zeng and Guo (2021) observed similar vertical concen-
tration profiles between long-term one- and two-dimensional simulations for
PFAS concentrations up to 1,000 mg/L, concluding that surfactant-induced
flow was negligible. In contrast, other studies suggest that surfactant-induced
flow can play a more significant role in the lateral spreading of bulk aqueous
fire-fighting foam at orders-of-magnitude higher concentrations, but with-
out considering vertical flow and transport processes (Valvatne et al., 2005).
These differences appear to depend strongly on PFAS type and concentra-
tion level, flow and transport representation (e.g., vertical vs. lateral vs.
full two-/three-dimensional), as well as site-specific conditions such as infil-
tration rates and soil heterogeneity. To explore these factors, a two-/three-
dimensional form of our model or other existing two- /three-dimensional mod-
els (e.g., Zeng and Guo, 2021) can be applied.

We recognize that the presented simulations focus on short-term PFAS
transport within a shallow (~10cm) soil column. The results are intended
to elucidate fundamental pore-scale mechanisms rather than to directly pre-
dict long-term field-scale behavior. The relevance of these mechanisms to
deeper vadose-zone soils (>1m) and longer time scales—where PFAS leach-
ing poses the greatest risk to groundwater—remains an open question. Ad-
dressing this gap will require future studies that link pore-scale retention and

mass-transfer parameters to depth-resolved vadose-zone models, thereby en-
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abling the evaluation of cumulative PFAS leaching and mass discharge under
realistic meteorological and hydrologic forcing.

Finally, we note that while most prior PFAS transport studies applied a
simplified two-phase flow model (i.e., Richards’ equation) to focus on trans-
port in a single fluid such as water (e.g., Guo et al., 2020; Silva et al., 2020),
our model—a generalization of Richards’ equation—accounts for full two-
phase flow and PFAS transport in both air and water. This broader frame-
work is particularly useful for representing systems where PFAS transport
and mass transfer in both phases are significant. For example, volatile PFAS
compounds require modeling transport in both air and water (e.g., Brusseau
and Guo, 2024), and similar considerations apply to water-NAPL systems
with substantial PFAS partitioning into both phases (e.g., Liao et al., 2022).
These advancements mark a critical step toward accurate long-term leaching
predictions, site-specific risk assessments, and the design of effective remedi-

ation strategies in complex environmental settings.

4.5. Model limitations and extensions

While the model in this study adopts several simplifying assumptions—
idealized pore geometry, lognormal or truncated lognormal pore size distribu-
tion, and uniform wettability, it can be extended to more complex conditions.
Potential extensions include broader classes of angular pore geometries, mul-
timodal pore size distributions, and mixed-wet porous media. For additional
angular geometries beyond square and triangular tubes, the two-phase flow
properties and their simplified mathematical forms can be derived using the
methodology in Section 2. In the case of a multimodal pore size distri-
bution, the problem can be decomposed into a superposition of multiple

single-modal distributions, with properties derived for each mode and then
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combined. For mixed-wet porous media, effective two-phase properties can
be obtained by superposing contributions from pores of different intrinsic
contact angles. These extensions will broaden the applicability of the frame-
work to diverse surfactant-laden flow and porous media systems, including
biosurfactant—water-soil environments (Yang et al., 2021; Li et al., 2022), oil
and gas reservoirs (Lake, 1989), and geological CO2/Hjy storage formations
(Fgyen et al., 2020; Chaturvedi et al., 2022).

The bundle-of-capillary-tubes model necessarily simplifies pore structure
by neglecting spatial connectivity and arrangement. It may not capture
some additional pore-scale phenomena (e.g., fluid trapping and hysteresis
during cyclic drainage-imbibition experiments) under certain experimental
and field conditions. When such processes are important, more realistic pore-
scale models—such as pore morphology model (e.g., Hazlett, 1995; Hilpert
and Miller, 2001), pore-network model (e.g., Fatt, 1956; Reeves and Celia,
1996; Chen and Guo, 2023), and direct numerical simulations (e.g., Martys
and Chen, 1996; Raeini et al., 2012)—can be employed to derive two-phase
properties. However, these approaches often do not yield closed-form ana-
lytical expressions, creating challenges for direct coupling with Darcy-scale
models. In such cases, we can embed advanced pore-scale models (e.g., pore
networks) directly within each grid block of a Darcy-scale model and form
a multiscale framework (e.g., Blunt et al., 2002). Another practical and
computationally efficient approach is employing empirical fitting to obtain
tractable functions for Darcy-scale simulations. These developments hold
promise for improving the predictive capability and accuracy of field-scale

simulations under real-world conditions.
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5. Conclusion

We present an upscaling workflow to quantify how pore-scale variations
in surfactant/PFAS-associated interfacial properties (i.e., interfacial tension
and contact angle) and pore angularity influence Darcy-scale two-phase flow
and surfactant/PFAS transport. The workflow proceeds through four key
steps: (1) Compute the fluid—fluid configuration in nonangular or angu-
lar pores for a given capillary pressure and interfacial tension (i.e., surfac-
tant/PFAS type and concentration), (2) Determine fluid-fluid partitioning
in a bundle of capillary tubes at the specified capillary pressure, (3) De-
rive two-phase flow properties (e.g., capillary pressure, relative permeability,
and fluid—fluid interfacial area as functions of saturation) using the bundle-
of-capillary-tubes model, (4) Couple these properties into Darcy-scale tran-
sient two-phase flow and surfactant /PFAS transport models. This pore-scale
to Darcy-scale upscaling workflow provides a mechanistic tool to study the
complex interactions between transient two-phase flow and surfactant/PFAS
transport processes in diverse porous media.

Our modeling investigations suggest a nonmonotonic and/or nonlinear
dependence of two-phase flow properties on the interfacial tension (or sur-
factant /PFAS type and concentration) and pore structures (i.e., pore geom-
etry and size distribution). These new two-phase flow properties are vali-
dated by a close match between model predicted and experimentally mea-
sured capillary pressure-saturation curves for surfactant-laden fluids in real
porous media samples (e.g., quartz sands). Furthermore, these two-phase
flow properties is coupled into a general two-phase flow model for simulat-
ing the transport of example surfactant-like contaminant (PFAS) transport

through unsaturated soil columns (e.g., the shallow soil layer of the vadose
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zone). The model simulations reveal that PFAS downward migration is
significantly delayed in unsaturated soils with cylindrical pores by the lower
water saturation and higher air—-water interfacial area, whereas angular pores
enhance PFAS retention by increasing the water saturation and decreasing
the air—water interfacial area. The findings highlight the critical role of pore
angularity on PFAS retention behaviors.

Beyond the demonstrated PFAS systems, this framework provides a gen-
eralizable tool for bridging pore-scale physics and continuum-scale model-
ing to support predictions and management of multiphase systems in envi-
ronmental and energy contexts, with potential applications in contaminant
transport, enhanced oil recovery, underground COy/Hy storage, and othe

relevant problems.
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Appendix A. Permeability of fluid in a half corner of an angular
pore

The dimensionless conductance of the wetting phase at the ¥ half corner

Ja,i given by

B mléi’i + mgémi + mg + 0.02 Sin(ﬁi — 7T/6)
Ja,i = €XP

= +21H1‘~1a¢ ,
1/4/m — Goj ’)

(A.1)
where m; = —18.2066, ms = 5.88287, and m3 = —0.351809 are fitting

parameters (Patzek and Kristensen, 2001), flm and @a,i are the area and
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shape factor of the wetting-phase region at a corner with a unit meniscus-

apex distance (i.e., lo,; = 1), respectively. A, ; is given by

i sin 3; 2 cos 0 cos(0 + 5;)
ot [cos(@ + /Bz):| [ sin 3;

+9+ﬂi—g : (A.2)

and éa,i is given by
é o Aa,i
UM = (0+ B — 7/2) sin B/ cos(0; + B))

(A.3)

Appendix B. Pore size distributions

Figure B.1 shows the pore size distributions for the two porous media

simulated in Sections 3.1 and 3.2.

x10* 1><lU£
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Figure B.1: Pore size distributions of porous media with (a) a mean pore size of 100um and
normalized standard deviation of 0.3, and (b) a mean pore size of 100pxm and normalized

standard deviation of 0.5.

Appendix C. Relative permeability and fluid—fluid interfacial area
as functions of saturation in porous media with cylin-

drical pores

Figure C.2 presents the relative permeability and fluid—fluid interfacial
area as functions of saturation in the porous medium with cylindrical pores

simulated in 3.1.
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Figure C.2: Impact of interfacial tension (vwn) on the relative permeability and fluid—
fluid interfacial area as functions of saturation in porous media with cylindrical pores.
A near neutral-wet condition (e.g., an intrinsic contact angle 6y of 80°) is used as an
illustrative example.We present the curves for the ~,, range where the contact angles
become 0 and remain constant. Note that v, is a proxy of the surfactant effect, i.e., a
smaller ., corresponds to a more interfacially active surfactant and/or a higher surfactant

concentration.

Appendix D. Accuracy of the explicit expressions and closed-form

functions

Figure D.3 presents the evaluations of explicit expressions and closed-
form functions for the two-phase flow properties by comparing with the

bundle-of-capillary-tubes model.

Appendix E. Temporal and spatial variations of flow and transport
variables

Appendix F. Parameters for experimental validation
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Figure D.3: Evaluations on the explicit expressions and closed-form functions for (a—c)
capillary pressure-saturation curves, (e—f) relative permeability—saturation curves, and (g—
h) fluid-fluid interfacial area—saturation curves using the bundle-of-capillary-tubes model
as a benchmark. Porous media with cylindrical, square-tube, and equilateral triangular-
tube pores are examined. A near neutral-wet condition (e.g., an intrinsic contact angle of
80°) is used as an example. We present the curves at three example interfacial tensions
(Ywn ) for each pore geometry—i.e., Yuwn/Ywn,0 = 0.22, 0.1, and 0.05 (i.e., 6 = 40°, 0° and
0°) for cylindrical pores; Ywn/Ywn,0 = 0.41, 0.18, and 0.05 (i.e., § = 65°, 20° and 0°) for
square-tube pores; and Ywn/Ywn,0 = 0.51, 0.25, and 0.05 (i.e., § = 70°, 45° and 0°) for
equilateral triangular-tube pores. A lognormal pore size distribution is used. The mean
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Figure E.4: Temporal and spatial variations of water saturation (S, ), water pressure head
(hw), contact angle (0), interfacial tension (v, which is normalized by the interfacial tension
for pure water 7o), and aqueous PFOS concentration (Coq) in an unsaturated soil column.
We present the simulation results for all three pore geometries—including cylindrical tubes
(top row), square tubes (middle row), and triangular tubes (bottom row)—at the PFOS
concentration of 100 mg/L under completely water-wet condition (6o = 0°). We present
the profiles from 0 to 4hours at an interval of 0.4hour for the porous medium with
cylindrical pores, and those from 0 to 2hours at an interval of 0.2 hour for the porous
medium with angular pores. The lines become progressively darker to represent advancing

simulation time.

43, 4796-4801.

Bastidas, A.M.P., 2016. Ottawa F-65 sand characterization. University of

California, Davis.

Bhattacharjee, D., Ramon, G.Z., Edery, Y., 2025. The evolution of invasion

30



OCoOoO~NOOPr,WNE

DU NUNUCUIOUIAORNANRNMARNARNARNDNWWWWRWRWWRWWRNNRNNRNNNNNNRPRRRERRRRRRPR
ARRANPRPOOONOITRWNPRPOOONDIRNRONROOONONERONROOCONNONRWNROOONOUNWNRO

908

909

910

911

912

Soil depth (m)

0 S
0.02
0.04
0.06
ST (a) (b) (c) (d)
0.1
0.85 0.95

-1 0 17 6.5 -6 5.5 5T 80 0.8

r (mg/L)

w (- o) -
0.02
0.04
0.06
0.08
() (g) (h)
0.1

Soil depth (m)

0475 048 0485 049  0.495-49 4.5 79.4 80 0.94
50 () ha un) c (meg/ L

0.02 (k)
) \ ‘ m) \ (n) (o)

0.46 0.48 05 -6 25 30 0.92 0.94 0‘)\” 0 98
Su (=) hy rcm ¥/ (- C (mg/L)

Soil depth (m)

Figure E.5: Temporal and spatial variations of water saturation (S, ), water pressure head
(hw), contact angle (0), interfacial tension (v, which is normalized by the interfacial tension
for pure water 7o), and aqueous PFOS concentration (Coq) in an unsaturated soil column.
We present the simulation results for all three pore geometries—including cylindrical tubes
(top row), square tubes (middle row), and triangular tubes (bottom row)—at the PFOS
concentration of 100 mg/L under weakly water-wet condition (fp = 80°) . We present
the profiles between 0 and 4 hours at an interval of 0.4 hour for the porous medium with
cylindrical pores, and those between 0 and 2 hours at an interval of 0.2 hour for the porous
medium with angular pores. The lines become progressively darker to represent advancing

simulation time.
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Derive two-phase flow properties for surfactant/PFAS-laden fluids in angular porous
media using a bundle-of-capillary-tubes model

Formulate the two-phase flow properties as functions of interfacial tension, contact
angle, and pore geometry and size distribution

Derive explicit expressions and closed-form functions for the two-phase flow properties

Couple explicit expressions and closed-form functions into a Darcy-scale two-phase flow
and surfactant/PFAS transport model

Example simulations highlight the critical role of pore angularity in PFAS transport and
retention in unsaturated soils
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