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A B S T R A C T

We present screening-type semi-analytical models for quantifying the fate and transport of PFAS, including
perfluoroalkyl acids (PFAAs) and their precursors (i.e., polyfluoroalkyl substances that can transform to PFAAs),
in a heterogeneous vadose zone. The models employ one-dimensional multi-continuum representations with
varying complexities (dual-porosity, dual-permeability, or triple-porosity). They account for PFAS-specific
transport processes, including multi-site rate-limited adsorption at solid–water and air–water interfaces, and
first-order biochemical transformation. Assuming steady-state infiltration, we derive semi-analytical solutions
for all models under arbitrary initial and boundary conditions. We validate these new solutions using
literature experimental breakthrough curves of PFAS and other solutes for various soils and wetting conditions.
Furthermore, we demonstrate the models’ capability by analyzing the long-term leaching and mass discharge
of two example PFAS (PFOS and a precursor PFOSB) in a heterogeneous vadose zone beneath a model PFAS-
contaminated site. The results demonstrate that the precursor undergoes significant transformation and adds
additional PFOS mass discharge to groundwater. Additionally, the simulations suggest that, due to strong
retention in the vadose zone (i.e., large residence time), the PFAS in the high- and low-conductivity transport
pathways can be considered as in equilibrium. Taking advantage of this result, we illustrate that the multi-
continuum models may be simplified to an effective single-porosity model for simulating the transport of
longer-chain PFAS in a heterogeneous vadose zone. Overall, the semi-analytical models provide practical tools
for assessing long-term fate and transport of PFAS in the vadose zone and mass discharge to groundwater in
the presence of precursor transformations.
1. Introduction

Per- and poly-fluoroalkyl substances (PFAS)—including both perflu-
oroalkyl acids (PFAAs) and precursors (i.e., polyfluoroalkyl substances
that can transform to PFAAs)—are emerging contaminants that have
accumulated significantly in the vadose zone at contaminated sites,
posing long-term threats to soil health and groundwater quality (e.g.,
Anderson et al., 2019; Brusseau et al., 2020). Characterizing and quan-
tifying PFAS fate and transport in the vadose zone are particularly
challenging due to their surfactant-like interfacially-active properties.
After entering the vadose zone, PFAS accumulate at air–water interfaces
in the unsaturated soil pore spaces (e.g., Lyu et al., 2018; Costanza
et al., 2019). They can also adsorb on solid surfaces by hydrophobic and
electrochemical interactions (e.g., Higgins and Luthy, 2006; Wei et al.,
2017; Van Glubt et al., 2021). Some PFAS may be volatilized, taken by
plant roots, or transformed by biochemical reactions (Choi et al., 2022;
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Dong et al., 2023; Brusseau and Guo, 2024). These processes may be
heterogeneous and rate-limited (e.g., Chen and Guo, 2023; Stults et al.,
2024a,b), leading to significant retention and nonequilibrium transport
phenomena of PFAS in the vadose zone. Representing these PFAS-
specific transport processes in the vadose zone is critical for assessing
contamination risks and developing effective remediation strategies.

Additionally, the transport and leaching of PFAS are strongly in-
fluenced by preferential flow pathways generated by physical het-
erogeneities of structured porous media (i.e., macropores, fractures,
and soil aggregates) in the vadose zone (e.g., Zeng and Guo, 2021,
2023). Characterization and modeling of preferential flow and non-
PFAS solute transport in structured porous media have been extensively
studied for several decades (e.g., Clay and Stott, 1973; Rao et al., 1974;
Beven and Germann, 1982; Flury et al., 1994; Flury, 1996; Leij et al.,
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2012; Sharma et al., 2021). A series of dual-continuum model formu-
lations in the forms of dual-porosity or dual-permeability models have
been developed, parameterized, and tested against laboratory and field
bservations (e.g., Skopp et al., 1981; Gerke and van Genuchten, 1993;

Pot et al., 2005; Gärdenäs et al., 2006). While advanced numerical
models that account for a range of PFAS-specific transport mechanisms
have been developed (e.g., Guo et al., 2020; Silva et al., 2020; Zeng
nd Guo, 2021; Zeng et al., 2021; Wallis et al., 2022; Zeng and Guo,

2023), none have represented preferential flow and transport in dual-
ontinuum formulations. Zeng and Guo (2021, 2023) examined the

impact of preferential flow and heterogeneity on PFAS transport in the
vadose zone, where the heterogeneity was explicitly represented in a
single-continuum formulation using a multi-dimensional model.

Compared to advanced numerical models, simpler analytical or
emi-analytical models are often preferable for practical applications
uch as screen-type analysis (e.g., contamination site characterization,
isk assessment, design of remedial actions, sensitivity analysis, and un-

certainty quantification). To date, numerous analytical/semi-analytical
models have been developed for the nonequilibrium transport of sorb-
ing and reactive non-PFAS solutes in porous media (e.g., Lindstorm and

arasimham, 1973; Toride et al., 1993; Chen et al., 2019; Sharma et al.,
2021). Most studies coupled one-site or two-site kinetic models for
he rate-limited adsorption at solid–water interfaces and biochemical
ransformation processes with advection–dispersion-type models for
he physical transport processes. These include single-porosity models
hat represent the solute transport in a single mobile domain (e.g.,

Lindstorm and Narasimham, 1973), dual-porosity models that represent
he solute transport in a mobile domain and an immobile domain (e.g.,

Toride et al., 1993), and triple-porosity models that represent solute
ransport in a fast mobile domain, a slow mobile domain, and an
mmobile domain (e.g., Sharma et al., 2021).

Few analytical/semi-analytical models account for PFAS-specific
transport processes in the vadose zone. Guo et al. (2022) developed
n analytical model for PFAS transport in homogeneous vadose zones
ssuming instantaneous air–water interfacial adsorption and two-site
ate-limited solid–water interfacial adsorption (referred to as ‘‘solid-
hase adsorption’’ hereafter). Precursor transformation processes were
ot considered. The analytical model was later coupled with a
roundwater dilution model to derive soil screening levels for PFAS-
ontaminated sites (Smith et al., 2024; Ma et al., 2025). In the present

study, we develop a comprehensive set of models that incorporate
multi-site rate-limited solid-phase and air–water interfacial adsorption,
and first-order transformation in multi-continuum modeling frame-
works including dual-porosity, dual-permeability, and triple-porosity
representations. We derive semi-analytical solutions for all the new

odels and evaluate them for various solutes, soil types, soil het-
rogeneity, and wetting conditions using experimentally measured

breakthrough curves. We then apply the semi-analytical solutions to
imulate the retention and leaching of PFAS at a model heteroge-

neous contaminated site and discuss strategies to select the appropriate
level of model complexity for a given contaminated site. To our
nowledge, these multi-continuum models and the semi-analytical

solutions are the first that account for multi-site rate-limited interfacial
adsorption and first-order transformation processes in dual-porosity,
dual-permeability, and triple-porosity formalisms.

2. Conceptual and mathematical models

We develop the conceptual representations for the nonequilibrium
ransport of PFAS in a heterogeneous vadose zone that consists of

structured porous media. Following that, we present the mathematical
models and derive the semi-analytical solutions for the models, includ-
ing dual-porosity, dual-permeability, and triple-porosity formulations
that couple multi-site rate-limited interfacial adsorption and first-order

transformation. w

2 
2.1. Conceptual model

We consider a heterogeneous vadose zone containing structured
soils (see Fig. 1a). As discussed in Section 1, structured soils contain
high-conductivity channels (e.g., macropores and fractures) and soil
aggregates. When infiltration occurs, water may rapidly travel through
high-conductivity channels and, in the meantime, gradually enter soil
ggregates. Water in the soil aggregates may exchange mass with the
igh-conductivity channels and/or directly flow from one aggregate to

another. A portion of the water in the soil aggregates may be trapped
e.g., in small and/or dead-end pores) and become stagnant. PFAS
issolved in water can be transported via advection and dispersion
long the high-conductivity channels and soil aggregates, as well as
etween them. PFAS dissolved in the stagnant water in the soil aggre-
ates can exchange mass with the mobile water in the soil aggregates
ia molecular diffusion.

We assume that the structured soils are uniformly distributed across
the vadose zone, and represent the vadose zone by a one-dimensional
continuum with two overlapping domains (see Fig. 1b), following the
classic dual-continuum conceptualization (e.g., Skopp et al., 1981). One
domain represents high-conductivity channels (referred to as ‘‘fracture
domain’’ hereafter), while the other represents soil aggregates (referred
to as ‘‘matrix domain’’ hereafter). The matrix domain is further divided
into two overlapping domains—a ‘‘mobile’’ domain containing only
flowing water and an ‘‘immobile’’ domain containing only stagnant
water. Additionally, we assume no direct mass exchange between the
fracture and immobile matrix domains, i.e., the mass transfer with the
fracture domain can only occur through the mobile matrix domain.
The above conceptualization leads to the so-called ‘‘triple-porosity’’
(fracture, mobile matrix, and immobile matrix) model (e.g., Pot et al.,
2005). Here, we generalize the ‘‘triple-porosity’’ to represent water
flow and PFAS-specific retention and transport mechanisms in the three
domains of a heterogeneous vadose zone. In each domain, PFAS can
be in the aqueous phase or adsorbed at solid–water and air–water
interfaces. The adsorption and desorption can occur instantaneously
or kinetically. PFAS in the aqueous phase may undergo biochemical
transformation.

We also present conceptualizations that simplify from the triple-
orosity representation under certain conditions following the multi-
ontinuum modeling literature (e.g., van Genuchten and Wierenga,

1976; Gerke and van Genuchten, 1993). When pore spaces in the soil
ggregates are all well-connected and no stagnant water is present, we
emove the immobile matrix domain and obtain the so-called ‘‘dual-
ermeability’’ model (e.g., Barenblatt et al., 1960; Leij et al., 2012).
lternatively, when the water flow and PFAS advection and dispersion

through the soil aggregates are negligible, we approximate the entire
atrix as an immobile domain that can only exchange mass with the

racture domain via molecular diffusion, which leads to the so-called
‘dual-porosity’’ model (e.g., Warren and Root, 1963). Finally, if we
further assume that the entire vadose zone is homogeneous, we obtain
the simplest ‘‘single-porosity’’ (one domain) model representation.

The terminology for the multi-continuum models discussed varies
in the literature. The triple-porosity model was sometimes referred to
as ‘‘triple-porosity, dual-permeability’’ model (e.g., Bai et al., 1993)
to indicate that water in the third continuum (‘‘porosity’’) is immo-
bile. Depending on the context, the dual-permeability model was also
called ‘‘dual-porosity’’ model (e.g., Gerke and van Genuchten, 1993) or
‘dual-porosity, dual-permeability’’ model (e.g., Bai et al., 1993). The
dual-porosity model was sometimes referred to as ‘‘mobile-immobile’’
model (e.g., van Genuchten and Wierenga, 1976; Šimůnek and van
Genuchten, 2008) or ‘‘dual-porosity, single-permeability’’ model (e.g.,
Bai et al., 1993). In the present study, we adopt the terms ‘‘triple-
orosity’’, ‘‘dual-permeability’’, and ‘‘dual-porosity’’ to be consistent
ith the terminology for the ‘‘single-porosity’’ model.
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Fig. 1. (a) Schematic of PFAS migration in a heterogeneous vadose zone with structured soils, and the corresponding conceptual models for (b) water flow
and (c) PFAS transport in the vadose zone. In the model conceptualization, the heterogeneous vadose zone is assumed to consist of three domains—a domain
consisting of fractures and other high-conductivity channels, a soil matrix domain containing mobile water, and a soil matrix domain containing immobile water.
The fractures and other high-conductivity channels, mobile matrix, and immobile matrix are each assumed a continuum throughout the vadose zone with distinct
flow and transport mechanisms. When released to the vadose zone, PFAS can transport in domains with mobile water, diffuse in domains with immobile water,
exchange mass between different domains, as well as kinetically adsorb at solid–water and air–water interfaces and biochemically transform in all domains.
2.2. Mathematical models

This section introduces the governing equations and initial and
boundary conditions for all models. In each subsection, we start with
the triple-porosity model. Following that, we simplify the triple-porosity
formulations to obtain the dual-permeability, dual-porosity, and single-
porosity formulations.

2.2.1. Water flow
We assume one-dimensional steady-state gravity-driven (unit head

gradient) infiltration along the vertical direction in the vadose zone
and hydrodynamic equilibrium (i.e., equal hydraulic head) among the
three domains (fracture, mobile matrix, and immobile matrix) at the
same soil depth. Because the elevation head is the same across the three
domains, their water pressure head is also equal. Under gravity-driven
steady-state infiltration, the water pressure head is uniform across the
soil depth. Denoting the bulk volume fraction of the three domains as
𝑤f, 𝑤m, and 𝑤im (i.e., 𝑤f + 𝑤m + 𝑤im = 1), we obtain the following
equations,

𝐼0 = 𝐼 f + 𝐼m = 𝑤f𝑘𝑟,f(𝜃f)𝐾𝑠𝑎𝑡,f +𝑤m𝑘𝑟,m(𝜃m)𝐾𝑠𝑎𝑡,m,

ℎf(𝜃f) = ℎm(𝜃m) = ℎim(𝜃im),
(1)

where the subscript ‘‘f’’, ‘‘m’’, and ‘‘im’’ denote the fracture, mobile
matrix, and immobile matrix domains, respectively; 𝐼0 is the total
infiltration rate, and 𝐼 f and 𝐼m are the infiltration rates in the fracture
and mobile matrix domains, respectively; 𝑘𝑟,f and 𝑘𝑟,m are the relative
permeability in the fracture and mobile matrix domains, respectively;
𝐾𝑠𝑎𝑡,f and 𝐾𝑠𝑎𝑡,m are the saturated hydraulic conductivity in the fracture
and mobile matrix domains, respectively; 𝜃 and ℎ with the subscripts
‘‘f’’, ‘‘m’’, and ‘‘im’’ are the water content and water pressure head in the
fracture, mobile matrix, and immobile matrix domains, respectively.
The water pressure head and relative permeability can be computed
as functions of the water content using the van Genuchten–Mualem
model (Mualem, 1976; van Genuchten, 1980).

Eq. (1) describes steady-state water infiltration for the triple-porosity
model. Steady-state water infiltration for the dual-permeability model
can be obtained by setting 𝑤im = 0 (i.e., 𝑤f + 𝑤m = 1) and removing
ℎim(𝜃im). Removing 𝐼m and 𝑤m𝑘𝑟,m(𝜃m)𝑘m (i.e., 𝑤m = 0 and 𝑤f +
𝑤im = 1) and treating the water in the matrix domain as immobile
gives the steady-state water infiltration for the dual-porosity model.
Finally, the steady-state water infiltration for the single-porosity model
(i.e., homogeneous vadose zone) is 𝐼0 with a water content of 𝑤f𝜃f +
𝑤 𝜃 +𝑤 𝜃 .
m m im im

3 
2.2.2. PFAS transport
PFAS, in addition to migrating by advection and dispersion in

water, partition to the solid–water and air–water interfaces in each of
the domains including fracture, mobile matrix, and immobile matrix
domains. We represent the partitioning to solid–water and air–water
interfaces by linear multi-site kinetic models. The solid–water and air–
water interfaces are divided into multiple parts (‘‘sites’’) and PFAS
partition at each site with a different kinetic rate. Additionally, we
represent the precursor transformation by a first-order kinetic model.

We formulate the governing equations for the transport of a PFAS,
which can be a PFAA or a precursor. The equations for a PFAA
and a precursor are almost identical except for the terms related to
transformation. Transformation adds PFAA to the system as a product
(i.e., source term) while it removes precursor from the system as a
reactant (i.e., sink term). Below, we present the general equations that
apply to either a PFAA or a precursor. Any terms that are specific to
the PFAA or precursor will be stated explicitly.

Assuming the fracture domain contains 𝑁 sw
f rate-limited solid-phase

adsorption sites and 𝑁aw
f rate-limited air–water interfacial adsorption

sites, the governing equation for the transport of a PFAA or precursor
in the fracture domain can be written as

𝜃f𝑅f
𝜕 𝑐f
𝜕 𝑡 + 𝜃f𝑣f

𝜕 𝑐f
𝜕 𝑧 − 𝜃f𝐷f

𝜕2𝑐f
𝜕 𝑧2 ± 𝜇f𝜃f𝑐p,f +

𝑤m
𝑤f

𝜅f,m
(

𝑐f − 𝑐m
)

+
𝑁sw

f
∑

𝑖=1
𝜌f
𝜕 𝑐sw

f,𝑖
𝜕 𝑡 +

𝑁aw
f
∑

𝑖=1
𝐴aw

f

𝜕 𝑐aw
f,𝑖
𝜕 𝑡 = 0,

(2)

where 𝑐f is the aqueous PFAS concentration; 𝑅f is the retardation
factor and 𝑅f = 1 +

(

𝐹 sw
f,eq𝐾

sw
f 𝜌f + 𝐹 aw

f,eq𝐾
aw
f 𝐴aw

f

)

∕𝜃f, where 𝐹 sw
f,eq is

the fraction of the instantaneous solid-phase adsorption sites, 𝐹 aw
f,eq is

the fraction of the instantaneous air–water interfacial adsorption sites,
𝐾sw

f and 𝐾aw
f are respectively the solid-phase and air–water interfacial

adsorption coefficients, 𝜌f is the soil bulk density, and 𝐴aw
f is the

specific area of air–water interfaces in the fracture domain; 𝑣f is the
porewater velocity; 𝐷f = 𝑣f𝛼L,f + 𝜏f𝐷0 is the dispersion coefficient,
where 𝛼L,f is the longitudinal dispersivity, 𝜏f is the tortuosity which
can be approximated as 𝜏f = 𝜃7∕3f ∕𝜃2𝑠,f where 𝜃𝑠,f is the saturated
water content (Millington and Quirk, 1961), and 𝐷0 is the molecular
diffusion coefficient in free water; 𝑐p,f is the aqueous concentration
of the precursor; 𝜇f is the transformation rate constant; 𝜅f,m is the
rate constant for the mass transfer between fracture and mobile matrix
domains; 𝑐sw

f,𝑖 is the PFAS concentration in the 𝑖th (𝑖 = 1, 2,… , 𝑁 sw
f ) rate-

limited solid-phase adsorption site; and 𝑐aw
f,𝑖 is the PFAS concentration

in the 𝑖th (𝑖 = 1, 2,… , 𝑁aw
f ) rate-limited air–water interfacial adsorption

site.
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Eq. (2) applies to either a PFAA or a precursor. For a PFAA, the
sign of the transformation term (𝜇f𝜃f𝑐p,f) is negative and 𝑐p,f is an
unknown variable that needs to be obtained from solving the transport
equation for the corresponding precursor. If Eq. (2) is applied to a
FAA that is the transformation product of multiple precursors, a trans-
ormation term needs to be included for each precursor. For a PFAA
ith no sources from precursor transformation, the transformation term

s removed. Conversely, the sign of the transformation term (𝜇f𝜃f𝑐p,f)
is positive for a precursor and, in this case, 𝑐p,f = 𝑐f. The resulting
equation directly applies to a precursor that serves as the reactant of
a one-step transformation as well as the first-step reaction of a multi-
step transformation. If a precursor is an intermediate product of a
multi-step transformation, an additional transformation term must be
added to account for the mass generated by that transformation step.
Furthermore, all precursors involved in the multi-step transformation
should be explicitly modeled. Example governing equations for multi-
step transformation and multi-species transport processes can be found
in the literature for non-PFAS solute transport in a single-porosity
domain (e.g., Chen et al., 2019; Nguyen et al., 2024; Ho et al., 2024).

𝐴aw
f in Eq. (2) can be a critical parameter due to the significant

mpact of air–water interfacial adsorption on PFAS transport (e.g.,
Guo et al., 2020). 𝐴aw

f may be obtained by different experimental
methods, including direct micro-CT imaging (e.g., Culligan et al., 2004;
Brusseau et al., 2007) and indirect measurements by interfacially-
ctive tracers (e.g., Schaefer et al., 2000; Chen and Kibbey, 2006;

Brusseau et al., 2015). If no measured data are available, an alternative
is to estimate 𝐴aw

f using the thermodynamic-based method (Leverett,
1941; Morrow, 1970; Bradford and Leij, 1997). The thermodynamic-
based method assumes that the mechanical work done for air–water
displacement is fully converted to the interfacial energy for generating
ir–water interfaces. Based on this assumption, 𝐴aw

f may be estimated
y computing the area under the soil–water characteristic curve as

𝐴aw
f =

𝜙f
𝜎 ∫

1

𝑆𝑤,f

𝑝𝑐 ,f(𝑆′
𝑤,f) d𝑆′

𝑤,f, (3)

where 𝜙f is the porosity, 𝜎 is the surface tension with no PFAS present,
𝑝𝑐 ,f is the capillary pressure, 𝑆𝑤,f is the water saturation, and 𝑆′

𝑤,f is a
ummy variable.

Eq. (3) for the thermodynamic-based air–water interfacial area was
erived based on the assumption of a quasi-static and reversible two-

phase displacement process (Leverett, 1941; Morrow, 1970). It does
ot account for the impact of hysteretic phenomena—such as trapped
nd disconnected air bubbles in pore spaces (Reeves and Celia, 1996;

Oostrom et al., 2001). It was also suggested that Eq. (3) may not
represent the influence of microscale surface roughness on air–water
interfaces associated with thin water films (Jiang et al., 2020a,b; Chen
and Guo, 2023). To address this limitation, a scaling factor has been
introduced to correct the thermodynamic-based specific air–water in-
terfacial area computed by Eq. (3) (Zeng et al., 2021; Guo et al., 2022;
Silva et al., 2022; Brusseau, 2023a).

Rate-limited solid-phase adsorption and air–water interfacial ad-
orption in the fracture domain are both described by a first-order
inetic model
𝜕 𝑐sw

f,𝑖
𝜕 𝑡 = 𝜅sw

f,𝑖

[

𝑓 sw
f,𝑖 (1 − 𝐹 sw

f,eq)𝐾
sw
f 𝑐f − 𝑐sw

f,𝑖

]

,

𝜕 𝑐aw
f,𝑖
𝜕 𝑡 = 𝜅aw

f,𝑖

[

𝑓 aw
f,𝑖

(

1 − 𝐹 aw
f,eq

)

𝐾aw
f 𝑐f − 𝑐aw

f,𝑖

]

,

(4)

where 𝜅sw
f,𝑖 is the rate constant at the 𝑖th solid-phase adsorption site,

𝑓 sw
f,𝑖 is the fraction of the 𝑖th solid-phase adsorption site with respect

to all rate-limited sites (i.e., ∑𝑁sw
f

𝑖=1 𝑓 sw
f,𝑖 = 1 and 𝑓 sw

f,𝑖 (1 − 𝐹 sw
f,eq) is the

actual fraction with respect to all sites), 𝜅aw
f,𝑖 is the rate constant at

the 𝑖th air–water interfacial adsorption site, 𝑓 aw
f,𝑖 is the fraction of the

𝑖th air–water interfacial adsorption site with respect to all rate-limited
∑𝑁aw

f aw aw aw
sites (i.e., 𝑖=1 𝑓f,𝑖 = 1 and 𝑓f,𝑖 (1 − 𝐹f,eq) is the actual fraction with

4 
respect to all sites). In general, the fractions of the solid-phase and
air–water interfacial adsorption sites and the rate constants can be
arbitrary. Determining these parameters (if arbitrary) can be challeng-
ng as it may require a large number of experimental measurements.
ne commonly used approach is to assume that 𝑓 and 𝜅 (either 𝑓 sw

f
and 𝜅sw

f , or 𝑓 aw
f and 𝜅aw

f ) follow a log-normal distribution (Chen and
Wagenet, 1995, 1997; Culver et al., 1997; Li and Brusseau, 2000),
.e., 𝑓 (𝜅) = 1

√

2𝜋 𝜅 𝜎𝜅 exp
(

− (log(𝜅)−𝜅̄)2

2𝜎2𝜅

)

, where 𝜅̄ and 𝜎𝜅 are the mean and
standard deviation of 𝜅. Practically, it is often assumed that there is a
finite number of rate-limited adsorption sites (either 𝑁 sw

f or 𝑁aw
f ) and

that each site is associated with a 𝜅 spaced at equal intervals. We can
hen compute the fraction 𝑓 for each site. This leads to the so-called
‘multi-site’’ model that includes multiple adsorption sites (including
ate-limited and instantaneous adsorption sites). When the number of

rate-limited adsorption sites is 1 (𝑁 sw
f = 1 or 𝑁aw

f = 1), the multi-site
odel is reduced to a ‘‘two-site’’ model that includes one rate-limited

adsorption site and one instantaneous adsorption site. The two-site
model does not need a log-normal distribution. It only requires the total
fraction of the rate-limited site and the rate constant of the rate-limited
adsorption.

Similar equations can be written for PFAS transport in the mobile
matrix domain with additional terms representing the mass exchange
with the immobile matrix domain. The immobile matrix domain may
contain soil aggregates of varying sizes that exchange mass with the
mobile domain at different rates (i.e., different time scales), which we
represent using a multi-domain model. Assuming that the immobile
matrix domain consists of 𝑁im soil aggregates (referred to as ‘‘sub-
domains’’ hereafter) and that the mobile matrix domain contains 𝑁 sw

m
rate-limited solid-phase adsorption sites and 𝑁aw

m rate-limited air–water
interfacial adsorption sites, the governing equation for PFAS transport
in the mobile matrix domain is given by

𝜃m𝑅m
𝜕 𝑐m
𝜕 𝑡 + 𝜃m𝑣m

𝜕 𝑐m
𝜕 𝑧 − 𝜃m𝐷m

𝜕2𝑐m
𝜕 𝑧2 ± 𝜇m𝜃m𝑐p,m − 𝜅f,m(𝑐f − 𝑐m)

𝑁sw
m

∑

𝑖=1
𝜌m

𝜕 𝑐sw
m,𝑖

𝜕 𝑡 +
𝑁aw

m
∑

𝑖=1
𝐴aw

m
𝜕 𝑐aw

m,𝑖

𝜕 𝑡 +
𝑤im
𝑤m

𝑁im
∑

𝑖=1
𝑤im,𝑖𝜅m,im,𝑖(𝑐m − 𝑐im,𝑖) = 0,

(5)

where 𝜅m,im,𝑖 is the rate constant for the mass transfer between the mo-
bile matrix domain and the 𝑖th (𝑖 = 1, 2,… , 𝑁im) immobile subdomain,
𝑐im,𝑖 is the aqueous PFAS concentration in the 𝑖th (𝑖 = 1, 2,… , 𝑁im)
mmobile subdomain, 𝑤im,𝑖 is the fraction of the bulk volume of 𝑖th

mmobile matrix subdomain (i.e., ∑𝑁im
𝑖=1 𝑤im,𝑖 = 1), and the remaining

ariables and parameters for the mobile matrix domain follow the same
efinitions as those in Eq. (2). The sign for the transformation term

𝜇m𝜃m𝑐p,m follows the same convention as that in Eq. (2) for a PFAA or
 precursor, as discussed earlier.

Like that in the fracture domain, the rate-limited solid-phase adsorp-
ion and air–water interfacial adsorption in the mobile matrix domain

are both described by a first-order kinetic model
𝜕 𝑐sw

m,𝑖

𝜕 𝑡 = 𝜅sw
m,𝑖

[

𝑓 sw
m,𝑖(1 − 𝐹 sw

m,eq)𝐾
sw
m 𝑐m − 𝑐sw

m,𝑖

]

,

𝜕 𝑐aw
m,𝑖

𝜕 𝑡 = 𝜅aw
m,𝑖

[

𝑓 aw
m,𝑖(1 − 𝐹 aw

m,eq)𝐾
aw
m 𝑐m − 𝑐aw

m,𝑖

]

,

(6)

where the variables and parameters for the mobile matrix domain
follow the same definitions as those in Eq. (4).

Finally, we present the governing equation for the PFAS in the
th (𝑖 = 1, 2,… , 𝑁im) immobile matrix subdomain. Assuming each 𝑖th

ubdomain contains one rate-limited solid-phase adsorption site and
ne rate-limited air–water interfacial adsorption site, we obtain

𝜃im,𝑖𝑅im,𝑖
𝜕 𝑐im,𝑖

𝜕 𝑡 ± 𝜇im,𝑖𝜃im,𝑖𝑐p,im,𝑖 − 𝜅m,im,𝑖(𝑐m − 𝑐im,𝑖)

+𝜌im
𝜕 𝑐sw

im,𝑖

𝜕 𝑡 + 𝐴aw
im

𝜕 𝑐aw
im,𝑖

𝜕 𝑡 = 0,
(7)

where 𝑅im,𝑖 is the retardation factor in the 𝑖th immobile matrix subdo-
main and 𝑅 = 1 +

(

𝐹 sw 𝐾sw𝜌 + 𝐹 aw 𝐾aw𝐴aw
)

∕𝜃 , 𝐹 sw is
im,𝑖 im,eq,𝑖 im im im,eq,𝑖 im im im,𝑖 im,eq,𝑖
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the fraction of the instantaneous solid-phase adsorption site, 𝐹 aw
im,eq,𝑖 is

the fraction of the instantaneous air–water interfacial adsorption site,
and the remaining variables and parameters (including the sign for the
transformation term) follow the same definitions as those in Eq. (2)
nd Eq. (5).

The rate-limited solid-phase adsorption and air–water interfacial
adsorption in the immobile matrix domain, following a first-order
kinetic model, is given by
𝜕 𝑐sw

im,𝑖

𝜕 𝑡 = 𝜅sw
im,𝑖

[(

1 − 𝐹 sw
im,eq,𝑖

)

𝐾sw
im 𝑐im,𝑖 − 𝑐sw

im,𝑖

]

,

𝜕 𝑐aw
im,𝑖

𝜕 𝑡 = 𝜅aw
im,𝑖

[

(1 − 𝐹 aw
im,eq,𝑖)𝐾

aw
im 𝑐im,𝑖 − 𝑐aw

im,𝑖

]

.

(8)

Eqs. (2)–(8) provide the one-dimensional governing equations for
he triple-porosity model. These equations can be reduced to obtain
he governing equations for the dual-permeability, dual-porosity, and
ingle-porosity models. For example, removing the mobile-immobile
ass-transfer term (i.e., 𝑤im

𝑤m

∑𝑁im
𝑖=1 𝑤im,𝑖𝜅m,im,𝑖(𝑐m − 𝑐im,𝑖)) in Eq. (5)

nd the governing equations for the immobile matrix subdomains
(i.e., Eqs. (7)–(8)) leads to the dual-permeability model. The dual-
porosity model can be recovered by removing Eqs. (5)–(6) and con-
necting the fracture domain with the immobile matrix domain (see
he resulting equations in Appendix B). Finally, the single-porosity
odel is obtained from Eq. (2) by removing the fracture–matrix mass

ransfer term and replacing the variables and parameters with their
domain-averaged quantities.

Initial and boundary conditions are required to solve the governing
quations presented above, which are described in the following two
ections, respectively.

2.2.3. Initial conditions
We first present the initial conditions for the triple-porosity model,

nd then show how they can be reduced to obtain the initial conditions
for the dual-permeability, dual-porosity, and single-porosity models.
All equations apply to both a PFAA and a precursor, thus we do not
explicitly differentiate them.

In the fracture domain of the triple-porosity model, the initial
queous PFAS concentration can be written as

𝑐f(𝑧, 𝑡 = 0) = 𝑐0
f (𝑧). (9)

The initial PFAS concentrations in the rate-limited solid-phase and
ir–water interfacial adsorption sites are respectively given by

𝑐sw
f,𝑖 (𝑧, 𝑡 = 0) = 𝑐sw,0

f,𝑖 (𝑧), 𝑖 = 1, 2,… , 𝑁 sw
f ,

aw
f,𝑖 (𝑧, 𝑡 = 0) = 𝑐aw,0

f,𝑖 (𝑧), 𝑖 = 1, 2,… , 𝑁aw
f .

(10)

Similarly, the initial aqueous PFAS concentration in the mobile
matrix domain can be written as

𝑐m(𝑧, 𝑡 = 0) = 𝑐0
m(𝑧). (11)

The initial PFAS concentrations of the rate-limited solid-phase and
ir–water interfacial adsorption sites in the mobile matrix domain are
espectively given by

𝑐sw
m,𝑖(𝑧, 𝑡 = 0) = 𝑐sw,0

m,𝑖 (𝑧), 𝑖 = 1, 2,… , 𝑁 sw
m ,

aw
m,𝑖(𝑧, 𝑡 = 0) = 𝑐aw,0

m,𝑖 (𝑧), 𝑖 = 1, 2,… , 𝑁aw
m .

(12)

For the immobile matrix domain, the initial aqueous PFAS concen-
tration in the 𝑖th subdomain can be written as

𝑐im,𝑖(𝑧, 𝑡 = 0) = 𝑐0
im,𝑖(𝑧), (13)

where 𝑖 = 1, 2,… , 𝑁im. The initial PFAS concentrations of the rate-
imited solid-phase and air–water interfacial adsorption sites in the

immobile matrix domain are respectively given by

𝑐sw
im,𝑖(𝑧, 𝑡 = 0) = 𝑐sw,0

im,𝑖 (𝑧),
aw aw,0 (14)

im,𝑖(𝑧, 𝑡 = 0) = 𝑐im,𝑖 (𝑧), c

5 
where 𝑖 = 1, 2,… , 𝑁im.
Eqs. (9)–(14) provide all required initial conditions for solving the

triple-porosity model. The initial conditions for the dual-permeability
model are given by Eqs. (9)–(12), while those for the dual-porosity
model are given by Eqs. (9)–(10) and Eqs. (13)–(14). For the single-
porosity model, the initial conditions are given by the aqueous concen-
tration, solid-phase adsorption, and air–water interfacial adsorption av-
eraged across all three domains (fracture, mobile matrix, and immobile
matrix domains).

The initial conditions presented above can be any arbitrary func-
ions in space. Note that the initial PFAS concentrations in different
omains and adsorption sites may be related to each other under
ertain conditions (e.g., under equilibrium conditions).

2.2.4. Boundary conditions
Similar to Section 2.2.3, we present the boundary conditions for

the triple-porosity model, and then introduce how they can be reduced
to obtain the boundary conditions for the dual-permeability, dual-
orosity, and single-porosity models. All equations apply to both a
FAA and a precursor.

We employ a flux-based aqueous concentration condition for the
op boundary and a zero aqueous concentration gradient condition at
he bottom boundary for both the fracture and mobile matrix domains.
ssuming semi-infinite domains, we obtain

[

−𝐷f
𝜕 𝑐f
𝜕 𝑧 + 𝑣f𝑐f

]

𝑧=0
= 𝑣f𝑐f,in(𝑡), &

[

𝜕 𝑐f
𝜕 𝑧

]

𝑧=∞
= 0, (15)

and
[

−𝐷m
𝜕 𝑐m
𝜕 𝑧 + 𝑣m𝑐m

]

𝑧=0
= 𝑣m𝑐m,in(𝑡), &

[

𝜕 𝑐m
𝜕 𝑧

]

𝑧=∞
= 0, (16)

where 𝑐f,in(𝑡) and 𝑐m,in(𝑡) are the aqueous concentrations at the inlet
(𝑧 = 0) of the fracture and mobile matrix domains at time 𝑡. No
oundary conditions are needed for the immobile matrix domain.

The boundary conditions for the dual-permeability model are the
ame as the triple-porosity model (i.e., Eqs. (15)–(16)). For the dual-

porosity model, only Equation (15) is needed, which gives the boundary
conditions for the fracture domain. The boundary conditions for the
single-porosity model are given by the weighted average of Eqs. (15)
and (16) using 𝑤f𝜃f and 𝑤m𝜃m as their weights, respectively.

2.3. Semi-analytical solutions

We solve the governing equations for all the models (Section 2.2.2)
semi-analytically using Laplace transform and inverse Laplace trans-
form subject to the initial conditions and boundary conditions (Sec-
tions 2.2.3–2.2.4). We summarize the key procedures below and present
dditional details in the appendices.

We first nondimensionalize the governing equations, initial condi-
tions, and boundary conditions, and perform Laplace transforms both in
time and in space. The equations in the Laplace domain are then solved
algebraically. Following that, we perform inverse Laplace transforms in
space (analytically) and in time (numerically) to obtain the physical
solutions. The detailed derivations for the triple-porosity and dual-
permeability models are provided in Appendix A, and those for the
dual-porosity and single-porosity models are presented in Appendix B.

3. Model evaluation and validation

We use three sets of miscible displacement experiments (i.e., lab-
ratory experiments in which water containing a dissolved solute is
njected into a soil column under steady-state water flow conditions)
rom the literature to evaluate and validate the semi-analytical models.
or each simulation, we also verify the semi-analytical models by
omparing with their numerical solutions.
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Table 1
Parameters for simulating the miscible displacement experiments with
packed homogeneous soils under saturated and unsaturated conditions.
Most parameters are collected from the literature (Brusseau et al., 2015,
2019) except for the solid-phase adsorption parameters, which are ob-
tained by model calibration. The adsorption parameters are assumed to
be the same under saturated and unsaturated conditions.

Physical and transport parameters
Parameter Unit Vinton Eustis

𝐿 cm 15 20
𝑣 cm/hr 30 30
𝛼L cm 0.2 0.5
𝜙 cm3/cm3 0.42 0.36
𝜌 g/cm3 1.51 1.69

Solid-phase adsorption parameters

Parameter Unit Vinton Eustis

PFOS SDBS PFOS SDBS

𝐾sw cm3/g 0.54 0.60 0.76 1.3
Two-site model
𝐹 sw – 0.92 0.39 0.88 0.41
𝜅sw hr−1 0.70 1.66 1.2 0.54
Multi-site model
𝐹 sw – 0.97 0.19 0.88 0.41
𝜅̄sw hr−1 2.0 5.8 2.8 2.2
𝜎𝜅sw hr−1 1.8 19 3.6 4.8

3.1. Simulating miscible displacement experiments in saturated homoge-
eous soils

We first consider saturated miscible displacement experiments re-
orted by Brusseau et al. (2019) for two interfacially-active solutes

(PFOS (perfluorooctane sulfonic acid), and SDBS (sodium dodecylben-
zene sulfonate)) conducted using packed homogeneous soil columns.
The objective is to test the representation of multi-site rate-limited
solid-phase adsorption (Brusseau et al., 2019) that was not included
n the prior analytical models for PFAS transport (Guo et al., 2022).

In each experiment, a pulse injection of PFOS solution (10 mg/L) or
DBS solution (10 mg/L) is introduced at the inlet of the saturated soil
olumn under steady-state flow. Breakthrough curves are constructed
rom a time series of aqueous concentrations at the outlet. Additional
etails of the experimental setup and soil hydraulic parameters are
resented in Table 1.

Because the packed soil column is homogeneous, we simulate the
experiments using the single-porosity model. For comparison, the sim-
ulations apply both the two-site and multi-site models for solid-phase
dsorption, which allows us to evaluate the importance of represent-
ng multi-site rate-limited solid-phase adsorption. The two-site model

has two undetermined parameters: the fraction of the instantaneous
ite (𝐹 sw), and the rate constant for kinetic adsorption (𝜅sw). The
ulti-site model has four undetermined parameters: the fraction of

he instantaneous site (𝐹 sw), the number of rate-limited sites (𝑁 sw),
nd the mean and standard deviation of the rate constant for kinetic
dsorption (𝜅̄sw and 𝜎𝜅sw ). We set 𝑁 sw = 100 for the multi-site model,
ecause we find that a further increase of 𝑁 sw does not notably improve
he results, consistent with previous studies (Brusseau et al., 2019).

We determine the unknown parameters for both models via calibra-
tion. The calibration uses the Nelder–Mead optimization algorithm
(or downhill simplex method) to find parameters that minimize the
root mean square error of log-scale aqueous concentrations, defined as
RMSElog =

(

1
𝑛
∑𝑛

𝑖=1
(

log 𝑐sim,𝑖 − log 𝑐obs,𝑖
)2
)1∕2

where 𝑐sim,𝑖 and 𝑐obs,𝑖 are
the normalized simulated and observed aqueous concentrations and 𝑛
is the number of data points.

We summarize the calibrated parameters in Table 1, and present
he simulated and measured breakthrough curves in Fig. 2. In all cases,

the multi-site model presents better agreements with the measurements
han the two-site model. The two-site model does not capture the
6 
long tailing at later times, whereas the multi-site model matches well
with later-time aqueous concentrations. For Vinton and Eustis soils,
RMSElog for PFOS decreases from 1.52 and 9.47 (two-site model) to
0.98 and 7.02 (multi-site model), respectively. For SDBS, RMSElog
are reduced from 0.36 and 1.09 to 0.33 and 0.35 for the two soils
when the multi-site model is used. The semi-analytical solutions are
also verified by their numerical solutions obtained from solving the
governing equations using a backward Euler finite difference method.
As shown in Fig. 2, the two solutions overlap for all cases.

3.2. Simulating miscible displacement experiments in unsaturated homoge-
neous soils

Using the calibrated solid-phase adsorption parameters from the
aturated experiments in Section 3.1, we simulate two miscible dis-
lacement experiments for SDBS in Vinton soil conducted under un-
aturated conditions (Brusseau et al., 2015). An experiment with a
ater saturation of 𝑆w = 0.82 is established by drainage and another
ith a water saturation of 𝑆w = 0.80 is established by imbibition.
e assume instantaneous air–water interfacial adsorption (Brusseau,

2020; Zeng et al., 2021) and collect air–water interfacial adsorption
parameters 𝐴aw and 𝐾aw from literature (Brusseau et al., 2015). The
𝐴aw is determined by interfacial tracer experiments and the 𝐾aw is
computed by the Langmuir isotherm from measured surface tension
data for SBDS. The calculations yield 𝐴aw = 68 cm−1 at 𝑆w = 0.82 and
𝐴aw = 61 cm−1 at 𝑆w = 0.80, and 𝐾aw = 2.9 × 10−3 cm.

The predicted and measured breakthrough curves are presented in
Fig. 3. The analytical and numerical solutions overlap for all cases
nd both generally agree with the experimental data. The multi-site
odel provides better predictions of the breakthrough curves than the

wo-site model as expected from the comparisons in Section 3.1. The
RMSElog for the multi-site model are 0.27∼0.77 times smaller than
hat for the two-site model. While the multi-site model matches the
w = 0.82 experiment well, it deviates slightly from the 𝑆w = 0.8

experiment (Fig. 3b), e.g., the model prediction did not capture the
long tail. Because the solid-phase adsorption is not expected to differ
between the two experiments, the deviation might be caused by exper-
imental variability (Guo et al., 2022). Because the model simulations
are predictions with no parameter tuning, a good agreement between
the simulations and experiments validates the multi-site model for rep-
resenting rate-limited solid-phase adsorption in unsaturated miscible
displacement experiments.

Furthermore, because the two-site model is identical to the ana-
lytical solution of Guo et al. (2022), the better match between the
multi-site model and experimental data indicates that the multi-site
model provides a more realistic representation of the actual physi-
cal processes occurring in the simulated experiments. This enhanced
capability enables more accurate simulations and better quantitative
analyses of PFAS transport behaviors in more complex porous media
systems.

3.3. Simulating miscible displacement experiments in unsaturated heteroge-
eous soils

This section further evaluates the dual-porosity and dual-permeabi-
lity models by simulating unsaturated miscible displacement experi-

ents in heterogeneous soils. Because experiments for PFAS and hy-
rocarbon surfactants in heterogeneous porous media are limited and

not well constrained (Hitzelberger et al., 2022; Liu et al., 2024), we
focus on simulating miscible displacement experiments conducted for
other interfacially-active solutes (Pot et al., 2005).

We simulate two sets of miscible displacement experiments. Each set
consists of three independent experiments conducted in an undisturbed
oil core sampled from a tile-drained agriculture field (Pot et al., 2005).
or each independent experiment, a pulse of solute solution is injected

at the inlet under steady-state unsaturated flow, and a time series of
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Fig. 2. Simulated vs. measured breakthrough curves for two interfacially active solutes (PFOS and SDBS) and two soil types (Vinton and Eustis) under saturated
conditions. The simulations include numerical (dashed lines) and semi-analytical (solid lines) solutions of a single-porosity model with two-site and multi-site
solid-phase adsorption. The measured data (circles, denoted as ‘‘Measured’’) are from Brusseau et al. (2019).
Fig. 3. Predicted vs. measured breakthrough curves for SDBS in Vinton soil under two unsaturated conditions: (a) 𝑆𝑤 = 0.82 (established by drainage), and (b)
𝑆𝑤 = 0.80 (established by imbibition). The simulations include numerical (dashed lines) and semi-analytical (solid lines) solutions of a single-porosity model
with two-site and multi-site solid-phase adsorption. Adsorption at air–water interfaces is assumed to be in equilibrium. The measured data (circles, denoted as
‘‘Measured’’) are from Brusseau et al. (2015).
t
d
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o
a
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aqueous concentrations is measured at the outlet to construct a break-
through curve. Three solutes are used, including bromide (a passive
solute) and two herbicides (Isoproturon and Metribuzin). Isoproturon
and Metribuzin both adsorb at solid–water interfaces and degrade in
water (i.e., reactive tracer). The experimental parameters have been
reported in Pot et al. (2005), which we summarize in Table 2.

We employ the dual-porosity and dual-permeability models with
wo-site kinetic solid-phase adsorption. Each simulation set begins

by determining the flow and transport parameters for the fracture
nd matrix domains—including bulk volume fractions of fracture and
atrix domains, water contents, infiltration rates, dispersivities, and

racture–matrix mass transfer rate constants. Because the fracture and
atrix domains are not explicitly differentiated for intact soil cores, we

alibrate the flow and transport parameters for the two domains using
he breakthrough curves of the passive solute bromide (see Fig. 4a,d

and Table 2). Then we use the herbicide breakthrough curves to esti-
mate the parameters for solid-phase adsorption and transformation (see
Table 3).
 d

7 
The comparisons between the simulated and measured
breakthrough curves (see Fig. 4) suggest a better performance of
the dual-permeability model than the dual-porosity model. The dual-
permeability model captures the bimodal behavior of the breakthrough
curves for the passive and reactive solutes in both soil cores. In contrast,
the dual-porosity model fails to do so. As expected, the RMSE =
(

1
𝑛
∑𝑛

𝑖=1
(

𝑐sim,𝑖 − 𝑐obs,𝑖
)2
)1∕2

for the dual-porosity model simulations
(0.010∼0.044) is greater than that for the dual-permeability model
(0.006∼0.019). Due to the relatively weak solid-phase adsorption (see
Table 3), Isoproturon and Metribuzin do not exhibit significant reten-
ion. However, they undergo significant degradation. We quantify the
egree of degradation using the ratio between the breakthrough mass
nd the total injected mass (i.e., 1 −∫ ∞

0 𝑐𝑧1 (𝑡) d𝑡∕ ∫
∞
0 𝑐𝑧0 (𝑡) d𝑡, where 𝑐𝑧0 (𝑡)

nd 𝑐𝑧1 (𝑡) are respectively the aqueous concentrations at the inlet and
utlet at time 𝑡). The results suggest that 62% of the Isoproturon mass
nd 40% of the Metribuzin mass are degraded in soil core 1. Conversely,
8% of Isoproturon and 36% of Metribuzin in soil core 2 are degraded

Table 3).
ue to smaller degradation rates (see
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Fig. 4. Model evaluation in unsaturated heterogeneous soils by comparing breakthrough curves simulated by numerical (dashed lines) and semi-analytical (solid
ines) solutions against those measured by Pot et al. (2005) (circles, denoted as ‘‘Measured’’). We simulate three solutes—including one passive solute (bromide) and

two reactive herbicides (Isoproturon and Metribuzin)—in two undisturbed soil cores using the dual-porosity model (denoted as ‘‘DualPoro’’) and dual-permeability
model (denoted as ‘‘DualPerm’’).
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4. Demonstration of model application

We present an example application to illustrate how the semi-
nalytical models can be used to quantify long-term PFAS leaching and
ransport in heterogeneous vadose zones at a model agricultural site
mpacted by the land application of PFAS-contaminated biosolids. We
ntroduce below the details of the problem setup, simulation results,
nd analysis.

4.1. Problem setup

We consider a 4-meter deep vadose zone consisting of a uniform
structured soil. We assume that PFAS-containing biosolids had been
applied annually to the land for 30 years. Two example PFAS are
considered in the biosolids: PFOS (a PFAS not known to degrade in
the environment) and PFOSB (perfluorooctane sulfonate betaine, which
is a precursor that may transform into PFOS). Because PFOS in the
soil may be directly released from biosolids or produced from PFOSB
transformation, we differentiate the two by referring to the former as
‘‘legacy’’ PFOS and the latter as ‘‘PFOSB-derived’’ PFOS. We consider
an annual precipitation of 60 cm and an annual average irrigation of
45.72 cm (Smith et al., 2024). The precipitation and irrigation lead to
8 
a net infiltration rate of 9.144 cm. The soil hydraulic properties and
PFAS transport parameters are presented in Table 4.

The initial concentration profile of PFAS at the site is generated
y simulating PFAS contamination from 30 years of biosolids land
pplication and the subsequent transport in the vadose zone using the
ual-permeability model. Descriptions for how the initial concentra-
ion profile is generated are presented in Appendix D.1. We take the
nitial concentration profile and apply the dual-permeability model to

simulate PFAS leaching in the vadose zone during post-contamination,
i.e., no additional PFAS-containing biosolids are applied to the site. In
addition to the base case simulation by the dual-permeability model, we
lso conduct simulations using the dual-porosity model and an effective
ingle-porosity model. The dual-porosity model assumes that water is
mmobile in the matrix domain and PFAS therein can only transport
ownward by exchanging mass with the fracture domain. The effective
ingle-porosity model is constructed by further simplifying the dual-
orosity model assuming that the residence time for PFAS in the vadose
one is sufficiently long such that the fracture and matrix domains
an be considered as in equilibrium. The governing equation for the
ffective single-porosity model is given by

𝑅
𝜕 𝑐

+ 𝑣
𝜕 𝑐

−𝐷
𝜕2𝑐

± 𝜇 𝑐 = 0, (17)

𝜕 𝑡 𝜕 𝑧 𝜕 𝑧2 p
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Table 2
Parameters for simulating breakthrough curves in heterogeneous soil
cores under unsaturated conditions. The experimental data are obtained
from Pot et al. (2005) and the parameters are determined by model
calibration.

Parameter Unit Soil core 1 Soil core 2
Experimental setup
𝐿 cm 30 30
𝜃 cm3/cm3 0.398 0.375
𝐼0 cm/hr 0.308 0.326
Injection time Pore volume 0.1548 0.1741
𝜌 g/cm3 1.25 1.25

Dual-porosity model
Fracture domain
𝜃f cm3/cm3 0.278 0.298
𝛼L,f cm 5.74 20.85
𝜅f,im hr−1 0.0003 0.0305
Immobile matrix domain
𝜃im cm3/cm3 0.120 0.077

Dual-permeability model
Fracture
𝑤f – 0.42 0.44
𝑤f𝐼 f∕𝐼0 – 0.8403 0.9996
𝜃f cm3/cm3 0.1952 0.3545
𝛼L,f cm 7.462 20.85
𝜅f,m hr−1 0.0443 0.09145
Matrix
𝜃m cm3/cm3 0.5448 0.3911
𝛼L,m cm 1.00 1.00

Table 3
Model parameters for Isoproturon and Metribuzin in the undisturbed soil cores
nder unsaturated conditions.
Parameter Unit Soil core 1 Soil core 2

Isoproturon Metribuzin Isoproturon Metribuzin

Dual-porosity model
𝐾sw g/cm3 1.31 1.17 1.28 0.64
𝐹 sw

f – 2.3e−2 1.64e−2 3.6e−2 4e−3
𝐹 sw

im – 2.62e−2 2.74e−2 3.6e−2 4e−2
𝜅𝑠𝑤 hr−1 5.47e−2 5.75e−2 7.46e−2 0.1296
𝜇 hr−1 0.11325 6.375e−2 0.1284 6.5e−2
Dual-permeability model
𝐾sw g/cm3 1.31 1.17 1.28 0.64
𝐹 sw

f – 8.625e−2 6.56e−2 3.6e−2 4e−3
𝐹 sw

m – 0.131 0.137 0.994 0.321
𝜅𝑠𝑤 hr−1 8.205e−3 8.625e−3 7.46e−3 1.296e−2
𝜇 hr−1 4.53e−2 1.53e−2 1.07e−2 6.5e−3

where 𝑐 is the aqueous PFAS concentration, 𝑐p is the aqueous precur-
sor concentration, and 𝑅, 𝑣, 𝐷, and 𝜇 are respectively the effective
retardation factor, porewater velocity, dispersion coefficient, and trans-
formation rate constant. The effective parameters are derived from
those of the dual-porosity model through a temporal moment analysis
method (see Appendix C), which yields 𝑅 = 𝑤f𝜃f𝑅f+𝑤im𝜃im𝑅im

𝑤f𝜃f
, 𝑣 = 𝑣f,

= 𝐷f, and 𝜇 = 𝑤f𝜃f𝜇f+𝑤im𝜃im𝜇im
𝑤f𝜃f

, where the subscripts ‘‘f ’’ and ‘‘im’’
denote the parameters defined in the fracture and immobile matrix
domains of the dual-porosity model.

The above simulations are conducted separately for PFOS and
FOSB. The PFOS simulations focus on the transport of legacy PFOS,

while the PFOSB simulations—which exclude any release of legacy
PFOS from biosolids—examine the movement of PFOSB and its trans-
formation into PFOS. The results are analyzed in the following section.

4.2. Long-term PFAS mass discharge and accumulation

We first analyze the base case dual-permeability simulation results.
he mass discharge from the vadose zone to groundwater and the spa-

tial aqueous concentration profiles in the fracture and matrix domains
re presented in Fig. 5. The results suggest that both PFOS and PFOSB
 c

9 
Table 4
Soil properties and PFAS transport parameters (Smith et al., 2024) for
field-scale simulations of PFAS transport in a heterogeneous vadose zone.
Note that due to the lack of field data and experimental characterizations,
the PFOSB release rate is assumed to be the same as PFOS and its
interfacial adsorption coefficients are estimated based on quantitative-
structure/property-relationship models (Brusseau and Van Glubt, 2021;
Brusseau, 2023b). The solid-phase adsorption coefficient is computed
from the product of the organic carbon normalized sorption coefficient
and the fraction of organic carbon (Brusseau, 2023b). The transformation
rate constant of PFOSB is estimated from its half-life time (Liu et al.,
2021) using a first-order transformation model.

Parameter Unit Value

Soil properties Fracture Matrix
𝑤 – 0.03 0.97
𝜌 g/cm3 1.58 1.66
𝜃r cm3/cm3 0.0 0.0
𝜃s cm3/cm3 0.75 0.457
𝛼VG cm−1 0.1 0.03
𝑛VG – 1.8 1.15
𝑘 cm/hr 20.1 2.54e−1

PFAS transport PFOS PFOSB
Release rate g/cm2/yr 6.72e−8 6.72e−8
𝑀w g/mol 500.13 587.32
𝜅f,m hr−1 4e−3 4e−3
𝛼L cm 24.4 24.4
𝐾aw cm 4.79e−2 1.26e−1
𝐾sw cm3/g 1.03 4.47
𝜇 hr−1 0 4.28e−5

are strongly retained in the vadose zone. Less than 66% of legacy
PFOS and 25% of PFOSB and PFOSB-derived PFOS are discharged
to groundwater after 200 years. Of the total PFAS mass (accounting
for both PFOS and PFOSB) discharged to groundwater, the majority
(approximately 98%) of the leaching occurred through the fracture
domain.

The residence time for PFOS and PFOSB in the fracture domain
is approximately 20 years and 54 years, respectively. They are even
greater in the matrix domain (approximately 9.6×103 years for PFOS
and 2.9×104 years for PFOSB). The residence time is much greater
han the time scale of fracture–matrix mass transfer (approximately
0 days), giving sufficient time for PFAS in the fracture and matrix

domains to reach equilibrium. Therefore, no significant nonequilib-
rium transport phenomena (e.g., early arrival and long tail) are ob-
served. Similarly, because the residence time is also much greater than
the half-life time of PFOSB transformation (approximately 1.8 years),
the majority of PFOSB (approximately 93% by the end of the 800-
year simulation) has been transformed into PFOS before reaching the
groundwater. The transformation of PFOSB adds additional PFOS mass
discharge to groundwater. Under the simulated conditions, the PFOSB-
derived PFOS accounts for 48% of the total PFOS (including legacy and
PFOSB-derived PFOS) mass discharge to groundwater.

The simulations by the dual-permeability and dual-porosity models
are almost identical (see Figs. 5a–b and Fig. D.2). We quantify their
ifferences using the first and second temporal moments of the mass
ischarge concentration curves, i.e., 𝛿 𝑚𝑛 = |(𝑚𝑛,DualPer m − 𝑚𝑛,DualPor o)∕
𝑛,DualPer m| × 100%, where 𝑚𝑛 is the first (𝑛 = 1) or second (𝑛 = 2) tem-

poral moment, and the subscripts ‘‘DualPer m’’ and ‘‘DualPor o’’ denote
the dual-permeability and the dual-porosity models (see Appendix C
for the calculations of 𝑚𝑛). The computed 𝛿 𝑚1 and 𝛿 𝑚2 are respectively
0.0019% and 0.0067% for PFOS, and 4.6% and 5.0% for PFOSB.

he difference between the dual-permeability and dual-porosity mod-
ls is small because the residence time of PFOS and PFOSB in the
atrix domain is much greater than those in the fracture domain,

.e., PFOS and PFOSB can be considered essentially immobile in the
atrix domain. This suggests that a dual-porosity model is sufficient

or simulating PFAS transport in the vadose zone under the set of
onditions considered at the site.
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Fig. 5. Long-term PFAS leaching and mass discharge in a heterogeneous vadose zone. The contamination phase (0∼30 years) is simulated by a dual-permeability
model, followed by three independent post-contamination simulations: a dual-permeability simulation (denoted as ‘‘DualPerm’’), a dual-porosity simulation
(denoted as ‘‘DualPoro’’), and an effective single-porosity simulation (denoted as ‘‘SinglePoro’’). (a–b) are the mass discharge rates computed from all three
models and (c-d) are the aqueous concentration profiles in the fracture domain and matrix domain computed from the dual-permeability model. The aqueous
concentrations are normalized by the inlet PFOS (c) or PFOSB (d) concentrations. For clarity, we refer to the PFOS directly released from biosolids as ‘‘legacy
PFOS’’, while that generated by PFOSB transformation as ‘‘PFOSB-derived PFOS’’.
Notably, the effective single-porosity model simulation also
gives results almost identical to those of the dual-permeability and
dual-porosity models. The computed relative differences of the first
and second moments (𝛿 𝑚1 and 𝛿 𝑚2) are respectively 0 and 1.6% for
legacy PFOS simulations and are respectively 3.5% and 7.0% for PFOSB
simulations. Here 𝛿 𝑚𝑛 is defined as 𝛿 𝑚𝑛 = |(𝑚𝑛,DualPor o − 𝑚𝑛,SinglePor o)∕
𝑚𝑛,DualPor o| × 100% where the subscript ‘‘SinglePor o’’ denotes the single-
porosity model (see Appendix C for the calculations of 𝑚𝑛). The excel-
lent agreement between the single-porosity and dual-porosity models
is expected given the earlier observation that PFAS in the fracture and
matrix domains can be considered as in equilibrium.

The analyses presented above suggest a more general model simpli-
fication strategy. A priori, one can estimate the residence time of the
PFAS in the fracture and matrix domains, and the time scale of mass
transfer between the fracture and matrix domains. If the residence time
in the matrix domain is much greater than that in the fracture domain,
a dual-porosity model should be sufficient. Furthermore, if the mass
transfer time is much smaller than the residence time in the fracture
domain, we can further simplify by employing an effective single-
porosity model. In this case, the analytical solutions presented in Guo
et al. (2022) can be directly modified (using the parameterization of the
effective single-porosity model) to conduct the simulation. The criteria
for determining the relative importance of different transport processes
based on their time scales and selecting the appropriate model options
can be derived from the (semi-)analytical solutions (e.g., Valocchi,
1985), which we summarize in Appendix C.

Finally, we recognize that the semi-analytical models in the present
study rely on a steady-state infiltration assumption that may not hold
under all conditions. For instance, rainfall or irrigation events can
create strong transient water flow near the land surface, particularly
during initial wetting and subsequent drainage. Under such conditions,
the semi-analytical models assuming steady-state may predict PFAS
concentration profiles in the upper ∼1 meter of soil that are notably
10 
different from the numerical simulations representing transient infil-
tration (Zeng and Guo, 2023). However, numerous field observations
and modeling studies of non-PFAS solute transport show that these
transient effects attenuate rapidly with depth and become negligible in
deeper vadose zones (e.g., van Genuchten and Wierenga, 1976, 1977;
Jury and Horton, 2004; Russo and Fiori, 2008). Furthermore, recent
PFAS modeling studies indicate that infiltration-driven transients (30-
min resolution rainfall) have a relatively minor impact on the long-term
leaching of the strongly interfacially-active (e.g., longer-chain) PFAS,
even in highly heterogeneous vadose zones (Zeng and Guo, 2023).
Therefore, the steady-state infiltration assumption is likely appropriate
for modeling long-term PFAS leaching in vadose zones that extend
beyond the shallow soil layer (e.g., deeper than 2 to 3 meters below
the land surface).

5. Summary and conclusion

We have developed a set of semi-analytical models for simulat-
ing the long-term fate and transport of PFAS in heterogeneous va-
dose zones and their mass discharge to groundwater. We employ
the dual- or multi-continuum conceptualization that represents the
high-conductivity channels (e.g., macropores or fractures) and low-
conductivity matrix domains (e.g., soil aggregates) as overlapping
continua. Depending on the specific representation used for the ma-
trix domain, we have formulated three models: dual-porosity, dual-
permeability, and tripe-porosity models. The dual-porosity and dual-
permeability models represent the high- and low-conductivity transport
pathways by two overlapping domains (i.e., a fracture domain and a
matrix domain). The dual-porosity model assumes water is mobile in
the fracture domain but immobile in the matrix domain, while the dual-
permeability model considers mobile water in both domains. Compared
to the dual-permeability model, the triple-porosity model includes an
additional immobile matrix domain.



S. Chen and B. Guo

s

c
u

d

c
i

f

t
(
𝑤
B
i
s

f

Advances in Water Resources 206 (2025) 105099 
All three models account for PFAS-specific retention and trans-
port processes, including advective and dispersive transport, two-site
and multi-site rate-limited adsorption at solid–water and air–water
interfaces, and biochemical transformation. We assume steady-state
infiltration and linear interfacial adsorption, and derive semi-analytical
solutions for the models. The semi-analytical solutions allow for ar-
bitrary initial and boundary conditions for the transport equations.
To the best of our knowledge, these semi-analytical models are the
first that couple multi-site rate-limited solid-phase and air–water in-
terfacial adsorption and biochemical transformation into dual-porosity,
dual-permeability, and tripe-porosity model formalisms.

These semi-analytical models have been tested and evaluated for
imulating miscible displacement experiments for a wide range of

solutes (passive or interfacially-active), soil types, soil heterogeneities,
and wetting conditions. Example one-dimensional field-scale simula-
tions demonstrate that the models are capable of simulating long-term
leaching and mass discharge of PFAS in the presence of precursor
transformation in heterogeneous vadose zones. The results using two
example longer-chain PFAS (PFOS and PFOSB) suggest that the large
residence time (due to strong retention) in the vadose zone has elim-
inated any nonequilibrium behaviors (e.g., no early-arrival and long-
tailing) under the simulated conditions. The large residence time also
gives sufficient time for the precursor to transform into PFOS, which
adds additional mass discharge of PFOS to groundwater. We have also
illustrated that the dual-porosity model may be sufficient to simulate
PFAS transport in the heterogeneous vadose zone if the residence time
in the matrix domain is significantly greater than that in the fracture
domain. Furthermore, a much simpler effective single-porosity model
may be used when the residence time of PFAS in the vadose zone is
much greater than the time scale of mass transfer between the fracture
and matrix domains. Based on these analyses, we have developed a
generalized strategy to guide the selection of the appropriate model.

Due to their computational efficiency, the semi-analytical solu-
tions can be used as practical tools for screen-type analysis at PFAS-
ontaminated sites. Although the semi-analytical solutions assume a
niform heterogeneous vadose zone, they can indirectly account for

the impact of spatial heterogeneity by running Monte Carlo simulations
for a wide range of soil types relevant to a specific site. These simula-
tions can provide the upper and lower bounds for expected long-term
PFAS leaching and mass discharge at the contaminated sites. The com-
puted mass discharge rates can also be incorporated into groundwater
transport models (e.g., simple dilution factor models or other more so-
phisticated process-based models) to establish PFAS-specific soil screen-
ing levels for heterogeneous vadose zones, as recently demonstrated
by Smith et al. (2024) and Ma et al. (2025) using the analytical solution
of Guo et al. (2022) for homogeneous vadose zones. We anticipate that
these efforts will advance site characterization, risk assessment, and
esign of remedial actions for PFAS-contaminated sites.
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Appendix A. Semi-analytical solutions for dual-permeability and
triple-porosity models

We derive the semi-analytical solutions for the dual-permeability
and triple-porosity models using the Laplace transform and inverse
Laplace transform. Because the two models share the same procedure,
the more sophisticated triple-porosity model formulations are used to
illustrate the general derivations. To obtain the solutions for the dual-
permeability model, one only needs to remove all the terms related
to the immobile matrix domain and repeat the following procedures.
The derivations for PFAAs and precursors are almost the same, except
for one derivation step right after taking the Laplace transform of the
governing equations in time. We explain the difference in the Laplace
transform (Appendix A.3).

A.1. Nondimensionalized governing equations

We nondimensionalize the governing equations (Eqs. (2)–(8)), ini-
ial conditions (Eqs. (9)–(14)), and boundary conditions (Eqs. (15)–
16)) using the following dimensionless parameters: 𝑣̄ = (𝑤f𝜃f𝑣f +

m𝜃m𝑣m)∕𝜃 where 𝜃 = 𝑤f𝜃f+𝑤m𝜃m+𝑤im𝜃im, 𝑇 = 𝑡∕(𝐿∕𝑣̄), and 𝑍 = 𝑧∕𝐿.
ecause the PFAS concentration shows up linearly in every term and

t does not influence the derivation, we keep its dimensional form to
implify the notation.

After the nondimensionalization, the governing equations in the
racture domain become

−
𝐷f
𝐿𝑣f

𝜕2𝑐f
𝜕 𝑍2

+
𝜕 𝑐f
𝜕 𝑍 +

𝑅f𝑣̄
𝑣f

𝜕 𝑐f
𝜕 𝑇 ±

𝜇f𝐿
𝑣f

𝑐p,f +
𝜅f,m𝐿
𝜃f𝑣f

𝑤m
𝑤f

(𝑐f − 𝑐m)

+
𝑁sw

f
∑

𝑖=1

𝑣̄𝜌f
𝜃f𝑣f

𝜕 𝑐sw
f,𝑖

𝜕 𝑇 +
𝑁aw

f
∑

𝑖=1

𝑣̄𝐴aw
f

𝜃f𝑣f

𝜕 𝑐aw
f,𝑖

𝜕 𝑇 = 0,

𝜕 𝑐sw
f,𝑖

𝜕 𝑇 =
𝐿𝜅sw

f,𝑖
𝑣̄

[

𝑓 sw
f,𝑖

(

1 − 𝐹 sw
f,eq

)

𝐾sw
f 𝑐f − 𝑐sw

f,𝑖

]

, 𝑖 = 1, 2,… , 𝑁 sw
f ,

𝜕 𝑐aw
f,𝑖

𝜕 𝑇 =
𝐿𝜅aw

f,𝑖
𝑣̄

[
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f,𝑖

(

1 − 𝐹 aw
f,eq

)

𝐾aw
f 𝑐f − 𝑐aw

f,𝑖

]

, 𝑖 = 1, 2,… , 𝑁aw
f .

(A.1)

The nondimensionalized governing equation in the mobile matrix do-
main is given by

−
𝐷m
𝐿𝑣m

𝜕2𝑐m
𝜕 𝑍2

+
𝜕 𝑐m
𝜕 𝑍 +

𝑅m𝑣̄
𝑣m

𝜕 𝑐m
𝜕 𝑇 ±

𝜇m𝐿
𝑣m

𝑐p,m −
𝜅f,m𝐿
𝜃m𝑣m

(𝑐f − 𝑐m)

+
𝑁 sw

m
∑
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𝑣̄𝜌m
𝜃m𝑣m

𝜕 𝑐sw
m,𝑖
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𝜕 𝑐sw
m,𝑖
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m,𝑖
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1 − 𝐹 aw
m,eq

)
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]

, 𝑖 = 1, 2,… , 𝑁aw
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(A.2)

https://github.com/GuoSFPLab/SemiAnalyticalSoln-PFAS-HeteroVZ
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The governing equations for the immobile matrix domain 𝑖 (𝑖 =
1, 2,… , 𝑁im) are

𝑅im,𝑖
𝜕 𝑐im,𝑖

𝜕 𝑇 −
𝜅m,im,𝑖𝐿
𝜃im,𝑖𝑣̄

(𝑐m − 𝑐im,𝑖) ±
𝜇im,𝑖𝐿

𝑣̄
𝑐p,im,𝑖

+
𝜌im
𝜃im,𝑖

𝜕 𝑐sw
im,𝑖

𝜕 𝑇 +
𝐴aw
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𝜃im,𝑖

𝜕 𝑐aw
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𝜕 𝑐sw
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[
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,
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im,𝑖𝐿

𝑣̄

[(

1 − 𝐹 aw
im,eq,𝑖

)

𝐾aw
im 𝑐im,𝑖 − 𝑐aw

im,𝑖

]

.

(A.3)

Eqs. (A.1)–(A.3) provide the dimensionless triple-porosity formulation
or the transport of a PFAS in a semi-infinite vadose zone, which is
ubject to the following initial and boundary conditions

𝑐f(𝑍 , 𝑇 = 0) = 𝑐0
f (𝑍),

sw
f,𝑖 (𝑍 , 𝑇 = 0) = 𝑐sw,0

f,𝑖 (𝑍), 𝑖 = 1, 2,… , 𝑁 sw
f ,

aw
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f,𝑖 (𝑍), 𝑖 = 1, 2,… , 𝑁aw
f ,
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sw
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m,𝑖(𝑍 , 𝑇 = 0) = 𝑐aw,0

m,𝑖 (𝑍), 𝑖 = 1, 2,… , 𝑁aw
m ,

im,𝑖(𝑍 , 𝑇 = 0) = 𝑐0
im,𝑖(𝑍), 𝑖 = 1, 2,… , 𝑁im,

sw
im,𝑖(𝑍 , 𝑇 = 0) = 𝑐sw,0

im,𝑖 (𝑍), 𝑖 = 1, 2,… , 𝑁im,
aw
im,𝑖(𝑍 , 𝑇 = 0) = 𝑐aw,0

im,𝑖 (𝑍), 𝑖 = 1, 2,… , 𝑁im,
[

−
𝐷f
𝐿𝑣f

𝜕 𝑐f
𝜕 𝑍 + 𝑐f

]

𝑍=0
= 𝑐f,in(𝑇 ), &

[

𝜕 𝑐f
𝜕 𝑍

]

𝑍=∞
= 0,

[

−
𝐷m
𝐿𝑣m

𝜕 𝑐m
𝜕 𝑍 + 𝑐m

]

𝑍=0
= 𝑐m,in(𝑇 ), &

[

𝜕 𝑐m
𝜕 𝑍

]

𝑍=∞
= 0.

(A.4)

A.2. Simplification of nondimensionalized governing equations

For the convenience of derivation, we simplify the notations of
the parameters and the expressions of Eqs. (A.1)–(A.4). The governing
equations for PFAS transport in the fracture domain are simplified as

− 1
 f

𝜕2𝑐f
𝜕 𝑍2

+
𝜕 𝑐f
𝜕 𝑍 +f

𝜕 𝑐f
𝜕 𝑇 ±f𝑐p,f +f(𝑐f − 𝑐m)

+
𝑁sw

f
∑

𝑖=1
sw

f

𝜕 𝑐sw
f,𝑖

𝜕 𝑇 +
𝑁aw

f
∑

𝑖=1
aw

f

𝜕 𝑐aw
f,𝑖

𝜕 𝑇 = 0,

𝜕 𝑐sw
f,𝑖

𝜕 𝑇 = sw
f,𝑖 𝑐f − sw

f,𝑖 𝑐
sw
f,𝑖 , 𝑖 = 1, 2,… , 𝑁 sw

f ,

𝜕 𝑐aw
f,𝑖

𝜕 𝑇 = aw
f,𝑖 𝑐f − aw

f,𝑖 𝑐
aw
f,𝑖 , 𝑖 = 1, 2,… , 𝑁aw

f ,

(A.5)

where  f = 𝑣f𝐿∕𝐷f, f = 𝑣̄𝑅f∕𝑣f, f = 𝜇f𝐿∕𝑣f, f = (𝜅f,m𝐿𝑤m)∕
(𝜃f𝑣f𝑤f), sw

f = (𝑣̄𝜌f)∕(𝜃f𝑣f), aw
f = (𝑣̄𝐴aw

f )∕(𝜃f𝑣f), sw
f,𝑖 = (𝐿𝜅sw

f,𝑖 ∕𝑣̄)𝑓
sw
f,𝑖

(

1 − 𝐹 sw
f,eq

)

𝐾sw
f , sw

f,𝑖 = 𝐿𝜅sw
f,𝑖 ∕𝑣̄, aw

f,𝑖 = (𝐿𝜅aw
f,𝑖 ∕𝑣̄)𝑓

aw
f,𝑖

(

1 − 𝐹 aw
f,eq

)

𝐾aw
f ,

aw
f,𝑖 = 𝐿𝜅aw

f,𝑖 ∕𝑣̄.
The governing equations for PFAS transport in the mobile matrix

omain are simplified as

− 1
m

𝜕2𝑐m
𝜕 𝑍2

+
𝜕 𝑐m
𝜕 𝑍 +m

𝜕 𝑐m
𝜕 𝑇 ±m𝑐p,m −m(𝑐f − 𝑐m)

𝑁sw
m

∑

𝑖=1
sw

m
𝜕 𝑐sw

m,𝑖

𝜕 𝑇 +
𝑁aw

m
∑

𝑖=1
aw

m
𝜕 𝑐aw

m,𝑖

𝜕 𝑇 +
𝑁im
∑

𝑖=1
mim,𝑖(𝑐m − 𝑐im,𝑖) = 0,

𝜕 𝑐sw
m,𝑖

𝜕 𝑇 = sw
m,𝑖𝑐m − sw

m,𝑖𝑐
sw
m,𝑖, 𝑖 = 1, 2,… , 𝑁 sw

m ,

𝜕 𝑐aw
m,𝑖

𝜕 𝑇 = aw
m,𝑖𝑐m − aw

m,𝑖𝑐
aw
m,𝑖, 𝑖 = 1, 2,… , 𝑁aw

m ,

(A.6)

where m = 𝑣m𝐿∕𝐷m, m = 𝑣̄𝑅m∕𝑣m, m = 𝜇m𝐿∕𝑣m, m =
(𝜅 𝐿)∕(𝜃 𝑣 ), sw = (𝑣̄𝜌 )∕(𝜃 𝑣 ), aw = (𝑣̄𝐴aw)∕(𝜃 𝑣 ), sw =
f,m m m m m m m m m m m m,𝑖

12 
(𝐿𝜅sw
m,𝑖∕𝑣̄)𝑓

sw
m,𝑖

(

1 − 𝐹 sw
m,eq

)

𝐾sw
m , sw

m,𝑖 = 𝐿𝜅sw
m,𝑖∕𝑣̄, aw

m,𝑖 = (𝐿𝜅aw
m,𝑖∕𝑣̄)𝑓

aw
m,𝑖

(

1 − 𝐹 aw
m,eq

)

𝐾aw
m , aw

m,𝑖 = 𝐿𝜅aw
m,𝑖∕𝑣̄, and mim,𝑖 = (𝑤im𝑤im,𝑖𝜅m,im,𝑖𝐿)∕

(𝑤m𝜃m𝑣m).
The governing equations for PFAS transport in the immobile matrix

omain are simplified as

im,𝑖

𝜕 𝑐im,𝑖

𝜕 𝑇 −im,𝑖(𝑐m − 𝑐im,𝑖) ±im,𝑖𝑐im,𝑖

+sw
im,𝑖

𝜕 𝑐sw
im,𝑖

𝜕 𝑇 +aw
im,𝑖

𝜕 𝑐aw
im,𝑖

𝜕 𝑇 = 0,
𝜕 𝑐sw

im,𝑖

𝜕 𝑇 = sw
im,𝑖𝑐im,𝑖 − sw

im,𝑖𝑐
sw
im,𝑖,

𝜕 𝑐aw
im,𝑖

𝜕 𝑇 = aw
im,𝑖𝑐im,𝑖 − aw

im,𝑖𝑐
aw
im,𝑖,

(A.7)

where im,𝑖 = 𝑅im,𝑖, im,𝑖 = 𝜇im,𝑖𝐿∕𝑣̄, im,𝑖 = (𝜅m,im,𝑖𝐿)∕(𝜃im,𝑖𝑣̄), sw
im,𝑖 =

𝜌im∕𝜃im,𝑖, aw
im,𝑖 = 𝐴aw

im ∕𝜃im,𝑖, sw
im,𝑖 = (𝐿𝜅sw

im,𝑖∕𝑣̄)
(

1 − 𝐹 sw
im,eq,𝑖

)

𝐾sw
im ,

sw
im,𝑖 = 𝐿𝜅sw

im,𝑖∕𝑣̄, aw
im,𝑖 = (𝐿𝜅aw

im,𝑖∕𝑣̄)
(

1 − 𝐹 aw
im,eq,𝑖

)

𝐾aw
im , and aw

im,𝑖 =
𝐿𝜅aw

im,𝑖∕𝑣̄, and 𝑖 = 1, 2,… , 𝑁im.
The equations for initial conditions remain the same as those

in Eq. (A.4), while the equations for boundary conditions become
[

− 1
 f

𝜕 𝑐f
𝜕 𝑍 + 𝑐f

]

𝑍=0
= 𝑐f,in(𝑇 ), &

[

𝜕 𝑐f
𝜕 𝑍

]

𝑍=∞
= 0,

[

− 1
m

𝜕 𝑐m
𝜕 𝑍 + 𝑐m

]

𝑍=0
= 𝑐m,in(𝑇 ), &

[

𝜕 𝑐m
𝜕 𝑍

]

𝑍=∞
= 0.

(A.8)

A.3. Laplace transform

We take the Laplace transform in time for Eqs. (A.5)–(A.7), which
yields

− 1
 f

𝜕2𝑐f
𝜕 𝑍2

+
𝜕 ̃𝑐f
𝜕 𝑍 +f(𝑠 ̃𝑐f − 𝑐0f ) ±f𝑐p,f +f(𝑐f − 𝑐m)

+
𝑁sw

f
∑

𝑖=1
sw

f (𝑠 ̃𝑐sw
f ,𝑖 − 𝑐sw,0

f ,𝑖 ) +
𝑁aw

f
∑

𝑖=1
aw

f (𝑠 ̃𝑐aw
f ,𝑖 − 𝑐aw,0

f ,𝑖 ) = 0,

𝑠 ̃𝑐sw
f ,𝑖 − 𝑐sw,0

f ,𝑖 = sw
f ,𝑖 𝑐f − sw

f ,𝑖 𝑐
sw
f ,𝑖 , 𝑖 = 1, 2,… , 𝑁 sw

f ,

𝑠 ̃𝑐aw
f ,𝑖 − 𝑐aw,0

f ,𝑖 = aw
f ,𝑖 𝑐f − aw

f ,𝑖 𝑐
aw
f ,𝑖 , 𝑖 = 1, 2,… , 𝑁aw

f ,

(A.9)

− 1
m

𝜕2𝑐m
𝜕 𝑍2

+
𝜕 ̃𝑐m
𝜕 𝑍 +m(𝑠 ̃𝑐m − 𝑐0m) ±m𝑐p,m −m(𝑐f − 𝑐m)

+
𝑁sw

m
∑

𝑖=1
sw

m (𝑠 ̃𝑐sw
m,𝑖 − 𝑐sw,0

m,𝑖 ) +
𝑁aw

m
∑

𝑖=1
aw

m (𝑠 ̃𝑐aw
m,𝑖 − 𝑐aw,0

m,𝑖 )

+
𝑁im
∑

𝑖=1
mim,𝑖(𝑐m − 𝑐im,𝑖) = 0,

𝑠 ̃𝑐sw
m,𝑖 − 𝑐sw,0

m,𝑖 = sw
m,𝑖𝑐m − sw

m,𝑖𝑐
sw
m,𝑖, 𝑖 = 1, 2,… , 𝑁 sw

m ,

𝑠 ̃𝑐aw
m,𝑖 − 𝑐aw,0

m,𝑖 = aw
m,𝑖𝑐m − aw

m,𝑖𝑐
aw
m,𝑖, 𝑖 = 1, 2,… , 𝑁aw

m ,

(A.10)

and
im,𝑖(𝑠 ̃𝑐im,𝑖 − 𝑐0im,𝑖) −im,𝑖(𝑐m − 𝑐im,𝑖) ±im,𝑖𝑐p,im,𝑖

+sw
im,𝑖(𝑠 ̃𝑐sw

im,𝑖 − 𝑐sw,0
im,𝑖 ) +aw

im,𝑖(𝑠 ̃𝑐aw
im,𝑖 − 𝑐aw,0

im,𝑖 ) = 0,
𝑠 ̃𝑐sw

im,𝑖 − 𝑐sw,0
im,𝑖 = sw

im,𝑖𝑐im,𝑖 − sw
im,𝑖𝑐

sw
im,𝑖,

𝑠 ̃𝑐aw
im,𝑖 − 𝑐aw,0

im,𝑖 = aw
im,𝑖𝑐im,𝑖 − aw

im,𝑖𝑐
aw
im,𝑖,

(A.11)

where 𝑖 = 1, 2,… , 𝑁im.
Eqs. (A.9)–(A.11) contains the following unknown variables: 𝑐f,

𝑐sw
f ,𝑖 , 𝑐aw

f ,𝑖 , 𝑐m, 𝑐sw
m,𝑖, 𝑐aw

m,𝑖, 𝑐im,𝑖, 𝑐sw
im,𝑖 and 𝑐aw

im,𝑖. We reduce the unknown
ariables to 𝑐f and 𝑐m through equation rearrangements and variable
ubstitutions. In particular, we rearrange the equations for rate-limited
olid-phase and air–water interfacial adsorption in Eqs. (A.9)–(A.11) to

obtain the expression for 𝑐sw
f ,𝑖 and 𝑐aw

f ,𝑖 as functions of 𝑐f, the expression
for 𝑐sw and 𝑐aw as functions of 𝑐 , and the expression for 𝑐sw and 𝑐aw
m,𝑖 m,𝑖 m im,𝑖 im,𝑖
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as functions of 𝑐im,𝑖. Additionally, Eq. (A.11) is further rearranged to
btain the expression for 𝑐im,𝑖 as a function of 𝑐m. Finally, we substitute

these expressions into Eqs. (A.9)–(A.10), which results in two equations
where 𝑐f and 𝑐m are the only unknown variables

− 1
 f

𝜕2𝑐f
𝜕 𝑍2

+
𝜕 ̃𝑐f
𝜕 𝑍 + ℎf(𝑠)𝑐f −f𝑐m + ℎ0f (𝑍 , 𝑠) = 0,

− 1
m

𝜕2𝑐m
𝜕 𝑍2

+
𝜕 ̃𝑐m
𝜕 𝑍 + ℎm(𝑠)𝑐m −m𝑐f + ℎ0m(𝑍 , 𝑠) = 0,

(A.12)

where ℎf(𝑠), ℎ0f (𝑍 , 𝑠), ℎm(𝑠), and ℎ0m(𝑍 , 𝑠) are slightly different for PFAAs
and precursors. For PFAAs, the equations are given by

ℎf(𝑠) = 𝑠f +f + 𝑠
⎛

⎜

⎜

⎝

𝑁sw
f

∑

𝑖=1

sw
f ,𝑖

sw
f

𝑠 + sw
f ,𝑖

+
𝑁aw

f
∑

𝑖=1

aw
f ,𝑖 

aw
f

𝑠 + aw
f ,𝑖

⎞

⎟

⎟

⎠

,

0
f (𝑍 , 𝑠) = −

𝑁sw
f

∑

𝑖=1

sw
f ,𝑖

sw
f 𝑐sw,0

f ,𝑖

𝑠 + aw
f ,𝑖

−
𝑁aw

f
∑

𝑖=1

aw
f ,𝑖 

aw
f 𝑐aw,0

f ,𝑖

𝑠 + aw
f ,𝑖

−f𝑐
0
f −f𝑐p,f,

m(𝑠) = 𝑠m +m + 𝑠
⎛

⎜

⎜

⎝

𝑁sw
m

∑

𝑖=1

sw
m,𝑖

sw
m

𝑠 + sw
m,𝑖

+
𝑁aw

m
∑

𝑖=1

aw
m,𝑖

aw
m

𝑠 + aw
m,𝑖

⎞

⎟

⎟

⎠

+
𝑁im
∑

𝑖=1
mim,𝑖

𝑠im,𝑖 +
𝑠sw

im,𝑖
sw
im,𝑖

𝑠+sw
im,𝑖

+
𝑠aw

im,𝑖
aw
im,𝑖

𝑠+aw
im,𝑖

𝑠im,𝑖 +im,𝑖 +
𝑠sw

im,𝑖
sw
im,𝑖

𝑠+sw
im,𝑖

+
𝑠aw

im,𝑖
aw
im,𝑖

𝑠+aw
im,𝑖

,

0
m(𝑍 , 𝑠) = −m𝑐0m −m𝑐p,m −

𝑁im
∑

𝑖=1
mim,𝑖

×
im,𝑖𝑐0im,𝑖 +im,𝑖𝑐p,im,𝑖 +

aw
im,𝑖

aw
im,𝑖𝑐

aw,0
im,𝑖

𝑠+aw
im,𝑖

+
sw

im,𝑖
sw
im,𝑖𝑐

sw,0
im,𝑖

𝑠+sw
im,𝑖

𝑠im,𝑖 +im,𝑖 +
𝑠sw

im,𝑖
sw
im,𝑖

𝑠+sw
im,𝑖

+
𝑠aw

im,𝑖
aw
im,𝑖

𝑠+aw
im,𝑖

−
𝑁sw

m
∑

𝑖=1

sw
m sw

m,𝑖𝑐
sw,0
m,𝑖

𝑠 + sw
m,𝑖

−
𝑁aw

m
∑

𝑖=1

aw
m aw

m,𝑖𝑐
aw,0
m,𝑖

𝑠 + aw
m,𝑖

,

(A.13)

where 𝑐p,f, 𝑐p,m, and 𝑐p,im,𝑖 are the Laplace-transformed concentrations
of precursors in the fracture, mobile matrix, and immobile matrix
domains, respectively. Eq. (A.13) applies to PFAAs either without or
with mass sources from precursor transformation. If the equation is
applied to PFAAs without transformation-induced mass sources, the
relevant source terms are set to zero: f = m = im,𝑖 = 0. When
transformation-induced sources are present, the precursor-related vari-
ables (𝑐p,f, 𝑐p,m, and 𝑐p,im,𝑖) must first be solved via Equation (A.12) us-
ing precursor-associated parameters and functions (i.e., ℎf(𝑠), ℎ0f (𝑍 , 𝑠),
ℎm(𝑠), and ℎ0m(𝑍 , 𝑠)).

The precursor-associated functions are derived by setting 𝑐p,f = 𝑐f,
𝑐p,m = 𝑐m, and 𝑐p,im,𝑖 = 𝑐im,𝑖, which yields

ℎf(𝑠) = 𝑠f +f +f + 𝑠
⎛

⎜

⎜

⎝

𝑁sw
f

∑

𝑖=1

sw
f ,𝑖

sw
f

𝑠 + sw
f ,𝑖

+
𝑁aw

f
∑

𝑖=1

aw
f ,𝑖 

aw
f

𝑠 + aw
f ,𝑖

⎞

⎟

⎟

⎠

,

ℎ0f (𝑍 , 𝑠) = −f𝑐
0
f −

𝑁sw
f

∑

𝑖=1

sw
f sw

f ,𝑖 𝑐
sw,0
f ,𝑖

𝑠 + sw
f ,𝑖

−
𝑁aw

f
∑

𝑖=1

aw
f aw

f ,𝑖 𝑐
aw,0
f ,𝑖

𝑠 + aw
f ,𝑖

,

ℎm(𝑠) = 𝑠m +m +m + 𝑠
⎛

⎜

⎜

⎝

𝑁sw
m

∑

𝑖=1

sw
m,𝑖

sw
m

𝑠 + sw
m,𝑖

+
𝑁aw

m
∑

𝑖=1

aw
m,𝑖

aw
m

𝑠 + aw
m,𝑖

⎞

⎟

⎟

⎠

+
𝑁im
∑

𝑖=1
mim,𝑖

𝑠im,𝑖 +im,𝑖 +
𝑠sw

im,𝑖
sw
im,𝑖

𝑠+sw
im,𝑖

+
𝑠aw

im,𝑖
aw
im,𝑖

𝑠+aw
im,𝑖

𝑠im,𝑖 +im,𝑖 +im,𝑖 +
𝑠sw

im,𝑖
sw
im,𝑖

𝑠+sw
im,𝑖

+
𝑠aw

im,𝑖
aw
im,𝑖

𝑠+aw
im,𝑖

,

ℎ0m(𝑍 , 𝑠) = −m𝑐0m −
𝑁sw

m
∑ sw

m sw
m,𝑖𝑐

sw,0
m,𝑖

sw −
𝑁aw

m
∑ aw

m aw
m,𝑖𝑐

aw,0
m,𝑖

aw

𝑖=1 𝑠 + m,𝑖 𝑖=1 𝑠 + m,𝑖

13 
−
𝑁im
∑

𝑖=1
mim,𝑖

im,𝑖𝑐0im,𝑖 +
aw

im,𝑖
aw
im,𝑖𝑐

aw,0
im,𝑖

𝑠+aw
im,𝑖

+
sw

im,𝑖
sw
im,𝑖𝑐

sw,0
im,𝑖

𝑠+sw
im,𝑖

𝑠im,𝑖 +im,𝑖 +im,𝑖 +
𝑠sw

im,𝑖
sw
im,𝑖

𝑠+sw
im,𝑖

+
𝑠aw

im,𝑖
aw
im,𝑖

𝑠+aw
im,𝑖

. (A.14)

Eq. (A.12) and Eq. (A.13) are used for PFAAs, while Eq. (A.12) and
q. (A.14) are used for precursors. They can be solved following the

same procedure hereafter. The next step is to take the Laplace transform
f Eq. (A.12) in space, which yields

− 1
 f

(

𝑟2 ̂̃𝑐f − 𝑟 ̃𝑐f|𝑍=0 −
𝜕 ̃𝑐f
𝜕 𝑍 |𝑍=0

)

+ 𝑟 ̂̃𝑐f − 𝑐f|𝑍=0

+ℎf(𝑠) ̂̃𝑐f −f ̂̃𝑐m = −ℎ̂0f (𝑟, 𝑠),
1
m

(

𝑟2 ̂̃𝑐m − 𝑟 ̃𝑐m|𝑍=0 −
𝜕 ̃𝑐m
𝜕 𝑍 |𝑍=0

)

+ 𝑟 ̂̃𝑐m − 𝑐m|𝑍=0

+ℎm(𝑠) ̂̃𝑐m −m ̂̃𝑐f = −ℎ̂0m(𝑟, 𝑠).

(A.15)

In Eq. (A.15), 𝑐f|𝑍=0, 𝑐m|𝑍=0,
𝜕 ̃𝑐f
𝜕 𝑍 |𝑍=0, and 𝜕 ̃𝑐m

𝜕 𝑍 |𝑍=0 remain unknown.
e first eliminate 𝜕 ̃𝑐f

𝜕 𝑍 |𝑍=0 and 𝜕 ̃𝑐m
𝜕 𝑍 |𝑍=0 using the boundary conditions

t 𝑍 = 0 (see Eq. (A.4)). To do so, we first take the Laplace transform
f Eq. (A.4) in time, which gives
[

− 1
 f

𝜕 ̃𝑐f
𝜕 𝑍 + 𝑐f

]

𝑍=0
= 𝑐f,in, &

[

− 1
m

𝜕 ̃𝑐m
𝜕 𝑍 + 𝑐m

]

𝑍=0
= 𝑐m,in. (A.16)

Then we cast Equation (A.16) back in Eq. (A.15), which yields
(

− 1
 f

𝑟2 + 𝑟 + ℎf(𝑠)
)

̂̃𝑐f −f ̂̃𝑐m = − 𝑟
 f

𝑐f|𝑍=0 + 𝑐f,in − ℎ̂0f (𝑟, 𝑠),
(

− 1
m

𝑟2 + 𝑟 + ℎm(𝑠)
)

̂̃𝑐m −m ̂̃𝑐f = − 𝑟
m

𝑐m|𝑍=0 + 𝑐m,in − ℎ̂0m(𝑟, 𝑠).

(A.17)

Solving Equation (A.17) yields,

̂̃𝑐f =

(

𝑟2 − m𝑟 − mℎm(𝑠)
) (

𝑟 ̃𝑐f|𝑍=0 −  f𝑐f,in +  fℎ̂0f(𝑟, 𝑠)
)

(

𝑟2 −  f𝑟 −  fℎf(𝑠)
) (

𝑟2 − m𝑟 − mℎm(𝑠)
)

−  ffmm

−
 ff

(

𝑟 ̃𝑐m|𝑍=0 − m𝑐m,in + mℎ̂0m(𝑟, 𝑠)
)

(

𝑟2 −  f𝑟 −  fℎf(𝑠)
) (

𝑟2 − m𝑟 − mℎm(𝑠)
)

−  ffmm
,

̂̃𝑐m = − mm
(

𝑟 ̃𝑐f|𝑍=0 −  f𝑐f,in +  fℎ̂0f(𝑟, 𝑠)
)

(

𝑟2 −  f𝑟 −  fℎf(𝑠)
) (

𝑟2 − m𝑟 − mℎm(𝑠)
)

−  ffmm

+

(

𝑟2 −  f𝑟 −  fℎf(𝑠)
) (

𝑟 ̃𝑐m|𝑍=0 − m𝑐m,in + mℎ̂0m(𝑟, 𝑠)
)

(

𝑟2 −  f𝑟 −  fℎf(𝑠)
) (

𝑟2 − m𝑟 − mℎm(𝑠)
)

−  ffmm
.

(A.18)

Suppose
(

𝑟2 −  f𝑟 −  fℎf(𝑠)
) (

𝑟2 − m𝑟 − mℎm(𝑠)
)

−  ffmm =
𝛱4

𝑖=1(𝑟 − 𝑟𝑖). We can factorize all the terms in Eq. (A.18) by

̂̃𝑐f =𝑐f|𝑍=0

4
∑

𝑖=1

4,𝑖 − 3,𝑖m − 2,𝑖mℎm(𝑠)
𝑟 − 𝑟𝑖

− 𝑐m|𝑍=0

4
∑

𝑖=1

2,𝑖 ff
𝑟 − 𝑟𝑖

+
4
∑

𝑖=1

(

3,𝑖 − 2,𝑖m − 1,𝑖mℎm(𝑠)
) (

− f𝑐f,in +  fℎ̂0f (𝑟, 𝑠)
)

𝑟 − 𝑟𝑖

−
4
∑

𝑖=1

1,𝑖 ff
(

−m𝑐m,in + mℎ̂0m(𝑟, 𝑠)
)

𝑟 − 𝑟𝑖
,

̂̃𝑐m = − 𝑐f|𝑍=0

4
∑

𝑖=1

2,𝑖mm
𝑟 − 𝑟𝑖

+ 𝑐m|𝑍=0

4
∑

𝑖=1

4,𝑖 − 3,𝑖 f − 2,𝑖 fℎf(𝑠)
𝑟 − 𝑟𝑖

−
4
∑

𝑖=1

1,𝑖mm
(

− f𝑐f,in +  fℎ̂0f(𝑟, 𝑠)
)

𝑟 − 𝑟𝑖

+
4
∑

𝑖=1

(

3,𝑖 − 2,𝑖 f − 1,𝑖 fℎf(𝑠)
) (

−m𝑐m,in + mℎ̂0m(𝑟, 𝑠)
)

𝑟 − 𝑟𝑖
,

(A.19)
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where 𝑗 ,𝑖 (𝑗 = 1, 2, 3, 4) are coefficients that are independent of 𝑟 and
atisfy ∑4

𝑖=1 𝑗 ,𝑖∕(𝑟 − 𝑟𝑖) = 𝑟𝑗−1∕𝛱4
𝑖=1(𝑟 − 𝑟𝑖).

In Eq. (A.19), 𝑐f|𝑍=0 and 𝑐m|𝑍=0 remain unknown and they need
to be solved using the boundary conditions at 𝑍 = ∞, which will be
discussed in Appendix A.4.

A.4. Inverse Laplace transform

We solve the physical aqueous concentrations (𝑐f and 𝑐m) through
the inverse Laplace transform. The inverse Laplace transform of
Eq. (A.19) is

𝑐f =𝑐f|𝑍=0

4
∑

𝑖=1

(

4,𝑖 − 3,𝑖m − 2,𝑖mℎm(𝑠)
)

exp
(

𝑟𝑖𝑍
)

− 𝑐m|𝑍=0 ff

4
∑

𝑖=1
2,𝑖 exp

(

𝑟𝑖𝑍
)

−  f𝑐f,in

4
∑

𝑖=1

(

3,𝑖 − 2,𝑖m − 1,𝑖mℎm(𝑠)
)

exp
(

𝑟𝑖𝑍
)

+  f

4
∑

𝑖=1

(

3,𝑖 − 2,𝑖m − 1,𝑖mℎm(𝑠)
)

∫

𝑍

0
ℎ0
f (𝑧

′, 𝑠) exp (𝑟𝑖(𝑍 − 𝑧′)
)

𝑑 𝑧′

+  ffm𝑐m,in

4
∑

𝑖=1
1,𝑖 exp

(

𝑟𝑖𝑍
)

−  ffm

4
∑

𝑖=1
1,𝑖 ∫

𝑍

0
ℎ0
m(𝑧

′, 𝑠) exp (𝑟𝑖(𝑍 − 𝑧′)
)

𝑑 𝑧′,

𝑐m = − 𝑐f|𝑍=0mm

4
∑

𝑖=1
2,𝑖 exp

(

𝑟𝑖𝑍
)

+ 𝑐m|𝑍=0

4
∑

𝑖=1

(

4,𝑖 − 3,𝑖 f − 2,𝑖 fℎf(𝑠)
)

exp
(

𝑟𝑖𝑍
)

+ mm f𝑐f,in

4
∑

𝑖=1
1,𝑖 exp

(

𝑟𝑖𝑍
)

− mm f

4
∑

𝑖=1
1,𝑖 ∫

𝑍

0
ℎ0
f (𝑧

′, 𝑠) exp (𝑟𝑖(𝑍 − 𝑧′)
)

𝑑 𝑧′

− m𝑐m,in

4
∑

𝑖=1

(

3,𝑖 − 2,𝑖 f − 1,𝑖 fℎf(𝑠)
)

exp
(

𝑟𝑖𝑍
)

+ m

4
∑

𝑖=1

(

3,𝑖 − 2,𝑖 f − 1,𝑖 fℎf(𝑠)
)

∫

𝑍

0
ℎ0
m(𝑧

′, 𝑠) exp (𝑟𝑖(𝑍 − 𝑧′)
)

𝑑 𝑧′,

(A.20)

where 𝑐f|𝑍=0 and 𝑐m|𝑍=0 need to be solved using the boundary condi-
tions at 𝑍 = ∞ (see Eq. (A.4)). To simplify the calculations, we further
efine the following equations,

𝑔f ,𝑖(𝑠) = 4,𝑖 − 3,𝑖 f − 2,𝑖 fℎf(𝑠),

𝑔m,𝑖(𝑠) = 4,𝑖 − 3,𝑖m − 2,𝑖mℎm(𝑠),

𝑔f(𝑍 , 𝑠) = − f𝑐f,in

4
∑

𝑖=1

(

3,𝑖 − 2,𝑖m − 1,𝑖mℎm(𝑠)
)

exp
(

𝑟𝑖𝑍
)

+  f

4
∑

𝑖=1

(

3,𝑖 − 2,𝑖m − 1,𝑖mℎm(𝑠)
)

× ∫

𝑍

0
ℎ0f (𝑧

′, 𝑠) exp (𝑟𝑖(𝑍 − 𝑧′)
)

𝑑 𝑧′

+  ffm𝑐m,in

4
∑

𝑖=1
1,𝑖 exp

(

𝑟𝑖𝑍
)

−  ffm

4
∑

1,𝑖 ∫

𝑍
ℎ0m(𝑧

′, 𝑠) exp (𝑟𝑖(𝑍 − 𝑧′)
)

𝑑 𝑧′,

(A.21)
𝑖=1 0

14 
𝑔m(𝑍 , 𝑠) = mm f𝑐f,in

4
∑

𝑖=1
1,𝑖 exp

(

𝑟𝑖𝑍
)

− mm f

4
∑

𝑖=1
1,𝑖 ∫

𝑍

0
ℎ0f (𝑧

′, 𝑠) exp (𝑟𝑖(𝑍 − 𝑧′)
)

𝑑 𝑧′

− m𝑐m,in

4
∑

𝑖=1

(

3,𝑖 − 2,𝑖 f − 1,𝑖 fℎf(𝑠)
)

exp
(

𝑟𝑖𝑍
)

+ m

4
∑

𝑖=1

(

3,𝑖 − 2,𝑖 f − 1,𝑖 fℎf(𝑠)
)

× ∫

𝑍

0
ℎ0m(𝑧

′, 𝑠) exp (𝑟𝑖(𝑍 − 𝑧′)
)

𝑑 𝑧′.
Accordingly, Eq. (A.20) can be written as

𝑐f =𝑐f|𝑍=0

4
∑

𝑖=1
𝑔m,𝑖(𝑠) exp

(

𝑟𝑖𝑍
)

− 𝑐m|𝑍=0 ff

4
∑

𝑖=1
2,𝑖 exp

(

𝑟𝑖𝑍
)

+ 𝑔f(𝑍 , 𝑠),

𝑐m = − 𝑐f|𝑍=0mm

4
∑

𝑖=1
2,𝑖 exp

(

𝑟𝑖𝑍
)

+ 𝑐m|𝑍=0

4
∑

𝑖=1
𝑔f ,𝑖(𝑠) exp

(

𝑟𝑖𝑍
)

+ 𝑔m(𝑍 , 𝑠).

(A.22)

Applying the boundary condition at 𝑍 = ∞ (see Eq. (A.4)) results in

lim
𝑍=∞

𝜕 ̃𝑐f
𝜕 𝑍 =𝑐f|𝑍=0 lim

𝑍=∞

4
∑

𝑖=1
𝑔m,𝑖(𝑠)𝑟𝑖 exp

(

𝑟𝑖𝑍
)

− 𝑐m|𝑍=0 ff lim
𝑍=∞

4
∑

𝑖=1
2,𝑖𝑟𝑖 exp

(

𝑟𝑖𝑍
)

+ lim
𝑍=∞

𝜕 𝑔f(𝑍 , 𝑠)
𝜕 𝑍

=0,

lim
𝑍=∞

𝜕 ̃𝑐m
𝜕 𝑍 = − 𝑐f|𝑍=0mm lim

𝑍=∞

4
∑

𝑖=1
2,𝑖𝑟𝑖 exp

(

𝑟𝑖𝑍
)

+ 𝑐m|𝑍=0 lim
𝑍=∞

4
∑

𝑖=1
𝑔f ,𝑖(𝑠)𝑟𝑖 exp

(

𝑟𝑖𝑍
)

+ lim
𝑍=∞

𝜕 𝑔m(𝑍 , 𝑠)
𝜕 𝑍

=0.

(A.23)

Eq. (A.23) contains both decaying (i.e., exp(𝑟𝑖𝑍) where 𝑟𝑖 has a negative
real part) and growing (i.e., exp(𝑟𝑖𝑍) where 𝑟𝑖 has a positive real part)
exponential terms. As 𝑍 → ∞, all the decaying terms vanish. After
these terms are eliminated, the remaining growing terms still involve
the unknown 𝑐f |𝑍=0 and 𝑐m|𝑍=0. To ensure that 𝑐f (𝑍 , 𝑠) and 𝑐m(𝑍 , 𝑠)
remain bounded, the coefficients of the growing terms must be set to
zero. These constraints yield a linear system, which can be directly
solved to obtain 𝑐f |𝑍=0 and 𝑐m|𝑍=0.

Finally, we can substitute the solved 𝑐f |𝑍=0 and 𝑐m|𝑍=0 into Eq. (A.22
for computing 𝑐f and 𝑐m, which are nonlinear functions of the Laplace
variable 𝑠. We can then perform inverse Laplace transform on 𝑐f and
𝑐m to compute the spatial and temporal variations of aqueous PFAS
oncentrations in the fracture domain 𝑐f and matrix domain 𝑐m using
umerical approximation methods reported by Durbin (1974), Crump

(1976), and De Hoog et al. (1982). Note that the accuracy of these nu-
erical approximations may depend on the model parameters (Honig

nd Hirdes, 1984) and the specific flow and transport conditions.
For conditions where the errors become significant, more advanced
umerical approximation methods can be adopted (Du et al., 2017).
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ppendix B. Semi-analytical solutions for single-porosity and
ual-porosity models

We derive the semi-analytical solutions for the single-porosity and
ual-porosity models using the Laplace transform and inverse Laplace
ransform. Because the two models share the same procedure, the more
nvolved dual-porosity model formulations are used to illustrate the
eneral derivations. One can remove all the terms related to the (im-
obile) matrix domain to obtain the solutions for the single-porosity
odel and repeat the following procedures. The derivations for PFAAs

nd precursors are almost the same, except for one derivation step right
fter taking the Laplace transform of the governing equations in time.
e explain the difference in the Laplace transform (Appendix B.4).

B.1. Governing equations

The governing equation for PFAS transport in the fracture domain
f the dual-porosity model is similar to that of the triple-porosity model

(Eq. (2)), except that the fracture domain exchanges mass directly with
he matrix domain where all of the water is immobile. The equation is
iven by

𝜃f𝑅f
𝜕 𝑐f
𝜕 𝑡 + 𝜃f𝑣f

𝜕 𝑐f
𝜕 𝑧 − 𝜃f𝐷f

𝜕2𝑐f
𝜕 𝑧2 ± 𝜃f𝜇f𝑐p,f +

𝑤im
𝑤f

𝑁im
∑

𝑖=1
𝑤im,𝑖𝜅f,im,𝑖

(

𝑐f − 𝑐im,𝑖
)

+
𝑁sw

f
∑

𝑖=1
𝜌f
𝜕 𝑐sw

f,𝑖
𝜕 𝑡 +

𝑁aw
f
∑

𝑖=1
𝐴aw

f

𝜕 𝑐aw
f,𝑖
𝜕 𝑡 = 0.

(B.1)

The PFAS concentrations at the solid–water and air–water interfaces
ollow the same governing equations as the triple-porosity model,

𝜕 𝑐sw
f,𝑖
𝜕 𝑡 = 𝜅sw

f,𝑖

[

𝑓 sw
f,𝑖 (1 − 𝐹 sw

f,eq)𝐾
sw
f 𝑐f − 𝑐sw

f,𝑖

]

,

𝜕 𝑐aw
f,𝑖
𝜕 𝑡 = 𝜅aw

f,𝑖

[

𝑓 aw
f,𝑖

(

1 − 𝐹 aw
f,eq

)

𝐾aw
f 𝑐f − 𝑐aw

f,𝑖

]

.

(B.2)

Similarly, the (immobile) matrix domain directly exchanges mass with
he fracture domain. The aqueous PFAS concentration in each 𝑖th

mmobile matrix domain is controlled by

𝜃im,𝑖𝑅im,𝑖
𝜕 𝑐im,𝑖

𝜕 𝑡 − 𝜅f,im,𝑖(𝑐f − 𝑐im,𝑖) ± 𝜃im,𝑖𝜇im,𝑖𝑐p,im,𝑖

+𝜌im
𝜕 𝑐sw

im,𝑖

𝜕 𝑡 + 𝐴aw
im

𝜕 𝑐aw
im,𝑖

𝜕 𝑡 = 0.
(B.3)

The governing equations for PFAS concentrations at the solid–water
and air–water interfaces of each 𝑖th immobile matrix domain remain
he same,
𝜕 𝑐sw

im,𝑖

𝜕 𝑡 = 𝜅sw
im,𝑖

[(

1 − 𝐹 sw
im,eq,𝑖

)

𝐾sw
im 𝑐im,𝑖 − 𝑐sw

im,𝑖

]

,

𝜕 𝑐aw
im,𝑖

𝜕 𝑡 = 𝜅aw
im,𝑖

[

(1 − 𝐹 aw
im,eq,𝑖)𝐾

aw
im 𝑐im,𝑖 − 𝑐aw

im,𝑖

]

.

(B.4)

B.2. Nondimensionalized governing equations

We derive the semi-analytical solutions for the dual-porosity model
following the same procedure as the triple-porosity model.

−
𝐷f
𝐿𝑣f

𝜕2𝑐f
𝜕 𝑍2

+
𝜕 𝑐f
𝜕 𝑍 + 𝑣̄

𝑣f
𝑅f

𝜕 𝑐f
𝜕 𝑇 ±

𝜇f𝐿
𝑣f

𝑐p,f +
𝑁sw

f
∑

𝑖=1

𝑣̄
𝑣f

𝜌f
𝜃f

𝜕 𝑐sw
f,𝑖

𝜕 𝑇

+
𝑁aw

f
∑

𝑖=1

𝑣̄
𝑣f

𝐴aw
f
𝜃f

𝜕 𝑐aw
f,𝑖

𝜕 𝑇 +
𝑤im
𝑤f

𝑁im
∑

𝑖=1

𝑤im,𝑖𝜅f,im,𝑖𝐿
𝜃f𝑣f

(𝑐f − 𝑐im,𝑖) = 0,
(B.5)

where 𝑣̄ = 𝑣f𝑤f𝜃f∕(𝑤f𝜃f + 𝑤im𝜃im). The governing equations in the
rate-limited solid-phase and air–water interfacial adsorption sites are
15 
𝜕 𝑐sw
f,𝑖

𝜕 𝑇 =
𝐿𝜅sw

f,𝑖
𝑣̄

[

𝑓 sw
f,𝑖

(

1 − 𝐹 sw
f,eq

)

𝐾sw
f 𝑐f − 𝑐sw

f,𝑖

]

, 𝑖 = 1, 2,… , 𝑁 sw
f ,

𝜕 𝑐aw
f,𝑖

𝜕 𝑇 =
𝐿𝜅aw

f,𝑖
𝑣̄

[

𝑓 aw
f,𝑖 (1 − 𝐹 aw

f,eq)𝐾
aw
f 𝑐f − 𝑐aw

f,𝑖

]

, 𝑖 = 1, 2,… , 𝑁aw
f .

(B.6)

The governing equation in the immobile matrix domain 𝑖 (𝑖 = 1, 2,… , 𝑁i
s given by

𝑅im,𝑖
𝜕 𝑐im,𝑖

𝜕 𝑇 −
𝜅f,im,𝑖𝐿
𝜃im,𝑖𝑣̄

(𝑐f − 𝑐im,𝑖) ±
𝜇im,𝑖𝐿

𝑣̄
𝑐p,im,𝑖

+
𝜌f
𝜃im,𝑖

𝜕 𝑐sw
im,𝑖

𝜕 𝑇 +
𝐴aw

f
𝜃im,𝑖

𝜕 𝑐aw
im,𝑖

𝜕 𝑇 = 0.
(B.7)

The governing equations at the rate-limited solid-phase adsorption site,
and rate-limited air–water interfacial adsorption site of the immobile
matrix domain 𝑖 (𝑖 = 1, 2,… , 𝑁im) are given by

𝜕 𝑐sw
im,𝑖

𝜕 𝑇 =
𝜅sw

im,𝑖𝐿

𝑣̄

[(

1 − 𝐹 sw
im,eq,𝑖

)

𝐾sw
im 𝑐im,𝑖 − 𝑐sw

im,𝑖

]

,

𝜕 𝑐aw
im,𝑖

𝜕 𝑇 =
𝜅aw

im,𝑖𝐿

𝑣̄

[

(1 − 𝐹 aw
im,eq,𝑖)𝐾

aw
im 𝑐im,𝑖 − 𝑐aw

im,𝑖

]

.

(B.8)

Eqs. (B.5)–(B.8) can be solved given the following initial conditions,

𝑐f(𝑍 , 𝑇 = 0) = 𝑐0f (𝑍),

𝑐sw
f,𝑖 (𝑍 , 𝑇 = 0) = 𝑐sw,0

f,𝑖 (𝑍)
(

𝑖 = 1, 2,… , 𝑁 sw
f

)

,

𝑐aw
f,𝑖 (𝑍 , 𝑇 = 0) = 𝑐aw,0

f,𝑖 (𝑍)
(

𝑖 = 1, 2,… , 𝑁aw
f

)

,

𝑐im,𝑖(𝑍 , 𝑇 = 0) = 𝑐0im,𝑖(𝑍)
(

𝑖 = 1, 2,… , 𝑁im
)

,

𝑐sw
im,𝑖(𝑍 , 𝑇 = 0) = 𝑐sw,0

im,𝑖 (𝑍)
(

𝑖 = 1, 2,… , 𝑁im
)

,

𝑐aw
im,𝑖(𝑍 , 𝑇 = 0) = 𝑐aw,0

im,𝑖 (𝑍)
(

𝑖 = 1, 2,… , 𝑁im
)

,

(B.9)

and boundary conditions
[

−
𝐷f
𝐿

𝜕 𝑐f
𝜕 𝑍 + 𝑣f𝑐f

]

𝑍=0
= 𝑣f𝑐f,in(𝑇 ), &

[

𝜕 𝑐f
𝜕 𝑍

]

𝑍=∞
= 0. (B.10)

B.3. Simplification of the nondimensionalized governing equations

We derive the semi-analytical solutions for Eqs. (B.5)–(B.8) using
he following nondimensionalized governing equations,

− 1
 f

𝜕2𝑐f
𝜕 𝑍2

+
𝜕 𝑐f
𝜕 𝑍 +f

𝜕 𝑐f
𝜕 𝑇 ±f𝑐p,f +

𝑁sw
f

∑

𝑖=1
sw

f

𝜕 𝑐sw
f,𝑖

𝜕 𝑇

+
𝑁aw

f
∑

𝑖=1
aw

f

𝜕 𝑐aw
f,𝑖

𝜕 𝑇 +
𝑁im
∑

𝑖=1
f,𝑖(𝑐f − 𝑐im,𝑖) = 0,

(B.11)

where f,𝑖 = (𝑤im𝑤im,𝑖𝜅f,im,𝑖𝐿)∕(𝑤f𝜃f𝑣f),

𝜕 𝑐sw
f,𝑖

𝜕 𝑇 = sw
f ,𝑖 𝑐f − sw

f ,𝑖 𝑐
sw
f,𝑖 , 𝑖 = 1, 2,… , 𝑁 sw

f ,

𝜕 𝑐aw
f,𝑖

𝜕 𝑇 = aw
f ,𝑖 𝑐f − aw

f ,𝑖 𝑐
aw
f,𝑖 , 𝑖 = 1, 2,… , 𝑁aw

f ,

(B.12)

im,𝑖
𝜕 𝑐im,𝑖

𝜕 𝑇 −im,𝑖(𝑐f − 𝑐im,𝑖) ±im,𝑖𝑐p,im,𝑖

+sw
im,𝑖

𝜕 𝑐sw
im,𝑖

𝜕 𝑇 +aw
im,𝑖

𝜕 𝑐aw
im,𝑖

𝜕 𝑇 = 0,
𝑖 = 1, 2,… , 𝑁im,

(B.13)

𝜕 𝑐sw
im,𝑖

𝜕 𝑇 = sw
im,𝑖𝑐im,𝑖 − sw

im,𝑖𝑐
sw
im,𝑖, 𝑖 = 1, 2,… , 𝑁im,

𝜕 𝑐aw
im,𝑖 = aw 𝑐im,𝑖 − aw 𝑐aw , 𝑖 = 1, 2,… , 𝑁im.

(B.14)
𝜕 𝑇 im,𝑖 im,𝑖 im,𝑖
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B.4. Laplace transform

We take the Laplace transform in time for Eqs. (B.11)–(B.14), which
yields

− 1
 f

𝜕2𝑐f
𝜕 𝑍2

+
𝜕 ̃𝑐f
𝜕 𝑍 +f(𝑠 ̃𝑐f − 𝑐0f) ±f𝑐p,f

+
𝑁sw

f
∑

𝑖=1
sw

f (𝑠 ̃𝑐sw
f ,𝑖 − 𝑐sw,0

f ,𝑖 ) +
𝑁aw

f
∑

𝑖=1
aw

f (𝑠 ̃𝑐aw
f ,𝑖 − 𝑐aw,0

f ,𝑖 )

+
𝑁im
∑

𝑖=1
f,𝑖(𝑐f − 𝑐im,𝑖) = 0,

(B.15)

𝑠 ̃𝑐sw
f ,𝑖 − 𝑐sw,0

f ,𝑖 = sw
f ,𝑖 𝑐f − sw

f ,𝑖 𝑐
sw
f ,𝑖 , 𝑖 = 1, 2,… , 𝑁 sw

f ,

𝑠 ̃𝑐aw
f ,𝑖 − 𝑐aw,0

f ,𝑖 = aw
f ,𝑖 𝑐f − aw

f ,𝑖 𝑐
aw
f ,𝑖 , 𝑖 = 1, 2,… , 𝑁aw

f ,
(B.16)

im,𝑖

(

𝑠 ̃𝑐im,𝑖 − 𝑐0im,𝑖

)

+aw
im,𝑖

(

𝑠 ̃𝑐aw
im,𝑖 − 𝑐aw,0

im,𝑖

)

±im,𝑖𝑐p,im,𝑖

−im,𝑖(𝑐f − 𝑐im,𝑖) + sw
im,𝑖

(

𝑠 ̃𝑐sw
im,𝑖 − 𝑐sw,0

im,𝑖

)

= 0,
𝑖 = 1, 2,… , 𝑁im,

(B.17)

𝑠 ̃𝑐sw
im,𝑖 − 𝑐sw,0

im,𝑖 = sw
im,𝑖𝑐im,𝑖 − sw

im,𝑖𝑐
sw
im,𝑖, 𝑖 = 1, 2,… , 𝑁im,

𝑠 ̃𝑐aw
im,𝑖 − 𝑐aw,0

im,𝑖 = aw
im,𝑖𝑐im,𝑖 − aw

im,𝑖𝑐
aw
im,𝑖, 𝑖 = 1, 2,… , 𝑁im.

(B.18)

Eqs. (B.15)–(B.18) contains the following unknown variables: 𝑐f,
𝑐sw
f ,𝑖 , 𝑐

aw
f ,𝑖 , 𝑐im,𝑖, 𝑐sw

im,𝑖 and 𝑐aw
im,𝑖. Similar to the derivations in Appendix A.3,

we rearrange the equations to eliminate the unknown variables except
or 𝑐f and obtain the following equation,

− 1
 f

𝜕2𝑐f
𝜕 𝑍2

+
𝜕 ̃𝑐f
𝜕 𝑍 + ℎf(𝑠)𝑐f + ℎ0f (𝑍 , 𝑠) = 0, (B.19)

where ℎf(𝑠) and ℎ0f (𝑍 , 𝑠) have different expressions for PFAAs and
recursors. For PFAAs, ℎf(𝑠) and ℎ0f (𝑍 , 𝑠) are given by

ℎf(𝑠) =𝑠f +
𝑁sw

f
∑

𝑖=1

𝑠sw
f sw

f ,𝑖

𝑠 + sw
f ,𝑖

+
𝑁aw

f
∑

𝑖=1

𝑠aw
f aw

f ,𝑖

𝑠 + aw
f ,𝑖

+
𝑁im
∑

𝑖=1
f,𝑖

𝑔im,𝑖(𝑠) −im,𝑖

𝑔im,𝑖(𝑠)
,

ℎ0f (𝑍 , 𝑠) = −f𝑐
0
f −f𝑐p,f −

𝑁im
∑

𝑖=1
f,𝑖

𝑔0im,𝑖(𝑍 , 𝑠)
𝑔im,𝑖(𝑠)

−
𝑁sw

f
∑

𝑖=1

sw
f sw

f ,𝑖 𝑐
sw,0
f ,𝑖

𝑠 + sw
f ,𝑖

−
𝑁aw

f
∑

𝑖=1

aw
f aw

f ,𝑖 𝑐
aw,0
f ,𝑖

𝑠 + aw
f ,𝑖

,

(B.20)

where

𝑔im,𝑖(𝑠) = 𝑠im,𝑖 +im,𝑖 +
𝑠sw

im,𝑖
sw
im,𝑖

𝑠 + sw
im,𝑖

+
𝑠aw

im,𝑖
aw
im,𝑖

𝑠 + aw
im,𝑖

,

0
im,𝑖(𝑍 , 𝑠) = im,𝑖𝑐

0
im,𝑖 +im,𝑖𝑐p,im,𝑖

+
sw

im,𝑖
sw
im,𝑖𝑐

sw,0
im,𝑖

𝑠 + sw
im,𝑖

+
aw

im,𝑖
aw
im,𝑖𝑐

aw,0
im,𝑖

𝑠 + aw
im,𝑖

,

(B.21)

where 𝑐p,f and 𝑐p,im,𝑖 are the Laplace-transformed aqueous concentra-
ions of precursors in the fracture and matrix domains, respectively.
qs. (B.20)–(B.21) apply to PFAAs either without or with mass sources

from precursor transformation. If the equation is applied to PFAAs with-
out transformation-induced mass sources, the relevant source terms
re set to zero: f = im,𝑖 = 0. If Eqs. (B.20)–(B.21) are used for
FAAs with transformation-induced mass sources, the precursor-related
ariables (𝑐p,f and 𝑐p,im,𝑖) need to be first solved via Equation (B.19)
sing precursor-associated parameters and functions (i.e., ℎf(𝑠) and
0(𝑍 , 𝑠)).
f

16 
The precursor-associated functions (i.e., ℎf(𝑠) and ℎ0f (𝑍 , 𝑠)) are de-
ived by setting 𝑐p,f = 𝑐f and 𝑐p,im,𝑖 = 𝑐im,𝑖, which yields

ℎf(𝑠) =𝑠f + f +
𝑁sw

f
∑

𝑖=1

𝑠sw
f sw

f ,𝑖

𝑠 + sw
f ,𝑖

+
𝑁aw

f
∑

𝑖=1

𝑠aw
f aw

f ,𝑖

𝑠 + aw
f ,𝑖

+
𝑁im
∑

𝑖=1
f,𝑖

𝑔im,𝑖(𝑠) −im,𝑖

𝑔im,𝑖(𝑠)
,

0
f (𝑍 , 𝑠) = −f𝑐

0
f −

𝑁im
∑

𝑖=1
f,𝑖

𝑔0im,𝑖(𝑍 , 𝑠)
𝑔im,𝑖(𝑠)

−
𝑁sw

f
∑

𝑖=1

sw
f sw

f ,𝑖 𝑐
sw,0
f ,𝑖

𝑠 + sw
f ,𝑖

−
𝑁aw

f
∑

𝑖=1

aw
f aw

f ,𝑖 𝑐
aw,0
f ,𝑖

𝑠 + aw
f ,𝑖

,

(B.22)

where

𝑔im,𝑖(𝑠) = 𝑠im,𝑖 +im,𝑖 +im,𝑖 +
𝑠sw

im,i
sw
im,𝑖

𝑠 + sw
im,𝑖

+
𝑠aw

im,𝑖
aw
im,𝑖

𝑠 + aw
im,𝑖

,

𝑔0im,𝑖(𝑍 , 𝑠) = im,𝑖𝑐
0
im,𝑖 +

sw
im,𝑖

sw
im,𝑖𝑐

sw,0
im,𝑖

𝑠 + sw
im,𝑖

+
aw

im,𝑖
aw
im,𝑖𝑐

aw,0
im,𝑖

𝑠 + aw
im,𝑖

.

(B.23)

Eq. (B.19) and Eqs. (B.20)–(B.21) are used for PFAAs, while Equa-
tion (B.19) and Eqs. (B.22)–(B.23) are used for precursors. They can be
solved following the same procedure hereafter. The next step is to take
the Laplace transform in space for Eq. (B.19), which yields

− 1
 f

(

𝑟2 ̂̃𝑐f − 𝑟 ̃𝑐f|𝑍=0 −
𝜕 ̃𝑐f
𝜕 𝑍 |𝑍=0

)

+ 𝑟 ̂̃𝑐f − 𝑐f|𝑍=0

+ℎf(𝑠) ̂̃𝑐f + ℎ̂0f (𝑟, 𝑠) = 0.
(B.24)

Eq. (B.24) is subject to the boundary condition given by Eq. (B.10).
e can take the Laplace transform of Eq. (B.10) at 𝑍 = 0 and cast it

into Eq. (B.24), which yields

̂̃𝑐f =
𝑐f|𝑍=0
𝑟1 − 𝑟2

(

𝑟1
𝑟 − 𝑟1

−
𝑟2

𝑟 − 𝑟2

)

−
 f𝑐f,in
𝑟1 − 𝑟2

(

1
𝑟 − 𝑟1

− 1
𝑟 − 𝑟2

)

+
 f

𝑟1 − 𝑟2

(

ℎ̂0f (𝑟, 𝑠)
𝑟 − 𝑟1

−
ℎ̂0f (𝑟, 𝑠)
𝑟 − 𝑟2

)

,

(B.25)

where 𝑟1 =  f∕2
(

1 −√

4ℎf(𝑠)∕ f + 1
)

and

2 =  f∕2
(

1 +√

4ℎf(𝑠)∕ f + 1
)

.

B.5. Inverse Laplace transform

We obtain the semi-analytical solutions from the inverse Laplace
transform of Eq. (B.25), which gives

𝑐f =
𝑐f|𝑍=0
𝑟1 − 𝑟2

(

𝑟1 exp(𝑟1𝑍) − 𝑟2 exp(𝑟2𝑍)
)

−
 f𝑐f,in
𝑟1 − 𝑟2

(

exp(𝑟1𝑍) − exp(𝑟2𝑍)
)

+
 f

𝑟1 − 𝑟2 ∫

𝑍

0
exp(𝑟1(𝑍 − 𝑧′))ℎ0f (𝑧

′, 𝑠)𝑑 𝑧′

−
 f

𝑟1 − 𝑟2 ∫

𝑍

0
exp(𝑟2(𝑍 − 𝑧′))ℎ0f (𝑧

′, 𝑠)𝑑 𝑧′.

(B.26)

Therefore,
𝜕 ̃𝑐f
𝜕 𝑍 =

𝑐f|𝑍=0
𝑟1 − 𝑟2

(

𝑟21 exp(𝑟1𝑍) − 𝑟22 exp(𝑟2𝑍)
)

−
 f𝑐f,in
𝑟1 − 𝑟2

(

𝑟1 exp(𝑟1𝑍) − 𝑟2 exp(𝑟2𝑍)
)

+
 f

𝑟1 − 𝑟2

(

𝑟1 ∫

𝑍

0
exp(𝑟1(𝑍 − 𝑧′))ℎ0f (𝑧

′, 𝑠)𝑑 𝑧′ + ℎ0f (𝑍 , 𝑠)
)

−
 f

(

𝑟2
𝑍
exp(𝑟2(𝑍 − 𝑧′))ℎ0(𝑧′, 𝑠)𝑑 𝑧′ + ℎ0(𝑍 , 𝑠)

)

.

(B.27)
𝑟1 − 𝑟2 ∫0 f f
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Given the boundary condition at 𝑧 = ∞ (Eq. (B.10)), we get

lim
𝑍=∞

𝜕 ̃𝑐f
𝜕 𝑍 = lim

𝑍=∞
exp(𝑟2𝑍)

[

𝑐f|𝑍=0

𝑟1 − 𝑟2

(

𝑟21 exp((𝑟1 − 𝑟2)𝑍) − 𝑟22
)

−
 f𝑐f,in

𝑟1 − 𝑟2

(

𝑟1 exp((𝑟1 − 𝑟2)𝑍) − 𝑟2
)

+
 f

𝑟1 − 𝑟2

(

𝑟1 ∫

𝑍

0
exp(𝑟1(𝑍 − 𝑧′))ℎ0

f (𝑧
′, 𝑠)𝑑 𝑧′

)

exp(−𝑟2𝑍)

−
 f

𝑟1 − 𝑟2

(

𝑟2 ∫

𝑍

0
exp(−𝑟2𝑧′)ℎ0

f (𝑧
′, 𝑠)𝑑 𝑧′

)]

= 0.

(B.28)

Given lim𝑍=∞ exp((𝑟1 − 𝑟2)𝑍) = 0, we compute 𝑐f|𝑍=0 from Eq. (B.28),
which yields

𝑐f|𝑍=0 =
 f
𝑟2

[

𝑐f,in − ∫

∞

0
exp(−𝑟2𝑧′)ℎ0f (𝑧

′, 𝑠)𝑑 𝑧′

+
(

𝑟1
𝑟2 ∫

𝑍

0
exp(𝑟1(𝑍 − 𝑧′))ℎ0f (𝑧

′, 𝑠)𝑑 𝑧′
)

exp(−𝑟2𝑍)
]

.
(B.29)

Casting Eq. (B.29) into Eq. (B.26) yields the solution in the Laplace
domain,

𝑐f =
[

𝑐f,in − ∫

∞

0
exp(−𝑟2𝑧′)ℎ0f (𝑧

′, 𝑠)𝑑 𝑧′

+
(

𝑟1
𝑟2 ∫

𝑍

0
exp(𝑟1(𝑍 − 𝑧′))ℎ0f (𝑧

′, 𝑠)𝑑 𝑧′
)

exp(−𝑟2𝑍)
]

×
 f

𝑟2(𝑟1 − 𝑟2)
(

𝑟1 exp(𝑟1𝑍) − 𝑟2 exp(𝑟2𝑍)
)

−
 f𝑐f,in
𝑟1 − 𝑟2

(

exp(𝑟1𝑍) − exp(𝑟2𝑍)
)

+
 f

𝑟1 − 𝑟2 ∫

𝑍

0
exp(𝑟1(𝑍 − 𝑧′))ℎ0f (𝑧

′, 𝑠)𝑑 𝑧′

−
 f

𝑟1 − 𝑟2 ∫

𝑍

0
exp(𝑟2(𝑍 − 𝑧′))ℎ0f (𝑧

′, 𝑠)𝑑 𝑧′.

(B.30)

We can then perform the inverse Laplace transform on 𝑐f to compute
the spatial and temporal variations of aqueous concentrations in the
mobile region. This can be done analytically using the method provided
by Toride et al. (1993) or numerically using the methods reported
y Durbin (1974), Crump (1976), and De Hoog et al. (1982).

Appendix C. Criteria for identifying nonequilibrium transport
regimes and guiding model selections

We use the semi-analytical solutions to derive the criteria to identify
he nonequilibrium transport regimes and provide guidance for select-

ing the appropriate model complexity for a given problem. This is done
by performing the temporal moment analysis on the mass discharge
concentration curves (Aris, 1958; Valocchi, 1985; Leij et al., 2012)
nd computing the relative difference in the temporal moments. The

derivations are summarized below.
In general, we can compute the 𝑛th normalized absolute temporal

oments via the following equations (e.g., Valocchi, 1985)

𝑚𝑛 = ∫

∞

0
𝑇 𝑛𝑐(𝑍 , 𝑇 ) d𝑇 = (−1)𝑛 lim

𝑠→0

𝜕𝑛𝑐(𝑍 , 𝑠)
𝜕 𝑠𝑛 , (C.1)

where 𝑐 is the aqueous concentration at location 𝑍 and Laplace time 𝑠.
For the mathematical convenience of deriving 𝑐, we assume that

the adsorption is instantaneous (which can be relaxed if rate-limited
adsorption is of interest) and that the inlet boundary condition is
given by a Dirac delta function with a unit mass. Accordingly, we can
compute 𝑐 for all the models.

For the single-porosity and dual-porosity models, 𝑐 is given by (e.g.,
Valocchi, 1985)

𝑐(𝑍 , 𝑠) = exp
{

𝑃
[

1 −
(

1 + 4 ℎ(𝑠)
)1∕2]}

, (C.2)

2 𝑃 m
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where 𝑃 is the Péclet number and ℎ(𝑠) is a function in the Laplace
time domain which can be obtained from the Laplace transform of the
governing equations of a specific model. The ℎ(𝑠) are derived from the
governing equations and their Laplace transform, as provided below.

For a single-porosity model, the governing equation is given by

− 1
𝑃

𝜕2𝑐
𝜕 𝑍2

+ 𝜕 𝑐
𝜕 𝑍 + 𝑅 𝜕 𝑐

𝜕 𝑇 +𝑐 = 0, (C.3)

where 𝑃 = 𝑣𝐿∕𝐷 is the Péclet number, 𝑅 = 1 + 𝐾aw𝐴aw∕𝜃 + 𝜌 𝐴sw∕𝜃
is the retardation factor,  = 𝜇 𝐿∕𝑣 is the Damköhler number for
transformation, and 𝑇 is the dimensionless time (𝑇 = 𝑡∕(𝐿∕𝑣) with
𝑣 being the porewater velocity). Taking the Laplace transform of the
above equation yields

− 1
𝑃

𝜕2𝑐
𝜕 𝑍2

+ 𝜕 ̃𝑐
𝜕 𝑍 + ℎ(𝑠)𝑐 = 0, (C.4)

where ℎ(𝑠) = 𝑅𝑠+. Substituting ℎ(𝑠) into Eqs. (C.1) and (C.2) allows
or computing the temporal moments for the breakthrough curves of a
ingle-porosity model.

For a dual-porosity model, we further assume the matrix contains
nly one immobile domain and obtain the governing equations as

− 1
𝑃 f

𝜕2𝑐f
𝜕 𝑍2

+
𝜕 𝑐f
𝜕 𝑍 + 𝑣̄

𝑣f
𝑅f

𝜕 𝑐f
𝜕 𝑇 +f𝑐f +

𝑤im
𝑤f𝜃f

Daf,im(𝑐f − 𝑐im) = 0,

𝑅im
𝜕 𝑐im
𝜕 𝑇 +

𝑣f
𝑣̄
im𝑐im −

𝑣f
𝜃im𝑣̄

Daf,im(𝑐f − 𝑐im) = 0,
(C.5)

where 𝑣̄ = 𝑤f𝜃f𝑣f∕(𝑤f𝜃f +𝑤im𝜃im), 𝑇 is the dimensionless time (i.e., 𝑇 =
∕(𝐿∕𝑣̄)), and 𝑃 f = 𝑣f𝐿∕𝐷f, Daf,im = 𝜅f,im𝐿∕𝑣f, and f = 𝜇f𝐿∕𝑣f

are respectively the Péclet number, Damköhler number for fracture–
matrix mass transfer, and Damköhler number for transformation in
the fracture domain; and im = 𝜇im𝐿∕𝑣f is Damköhler number for
transformation in the immobile matrix domain. Applying the Laplace
transform to Eq. (C.5) and rearranging the resulting equation yields

− 1
𝑃 f

𝜕2𝑐f
𝜕 𝑍2

+
𝜕 ̃𝑐f
𝜕 𝑍 + ℎ(𝑠)𝑐f = 0, (C.6)

where ℎ(𝑠) = 𝑣̄𝑅f𝑠∕𝑣f + f +
𝑤im𝜃im
𝑤f𝜃f

Daf,im(𝑅im𝑠+im)

𝜃im 𝑣̄𝑅im𝑠∕𝑣f+𝜃imim+Daf,im
. Substitut-

ng ℎ(𝑠) into Eqs. (C.1) and (C.2) allows for computing the temporal
oments for the breakthrough curves of a dual-porosity model.

For the dual-permeability model, the 𝑐 in Eq. (C.1) is given by
𝑐 = (𝑤f𝜃f𝑣f𝑐f + 𝑤m𝜃m𝑣m𝑐m)∕(𝑤f𝜃f𝑣f + 𝑤m𝜃m𝑣m), where 𝑐f and 𝑐m are
olved using the following governing equations,

− 1
𝑃 f

𝜕2𝑐f
𝜕 𝑍2

+
𝜕 𝑐f
𝜕 𝑍 + 𝑣̄

𝑣f
𝑅f

𝜕 𝑐f
𝜕 𝑇 +f𝑐f +

𝑤m
𝑤f𝜃f

Daf,m(𝑐f − 𝑐m) = 0,

− 1
𝑃m

𝜕2𝑐m
𝜕 𝑍2

+
𝜕 𝑐m
𝜕 𝑍 + 𝑣̄

𝑣m
𝑅m

𝜕 𝑐m
𝜕 𝑇 +

𝑣f
𝑣m

m𝑐m −
𝑣f

𝑣m𝜃m
Daf,m(𝑐f − 𝑐m) = 0,

(C.7)

where 𝑣̄ = (𝑤f𝜃f𝑣f + 𝑤m𝜃m𝑣m)∕(𝑤f𝜃f + 𝑤m𝜃m), 𝑇 is the dimensionless
ime (i.e., 𝑇 = 𝑡∕(𝐿∕𝑣̄)), Daf,m = 𝜅f,m𝐿∕𝑣f and f = 𝜇f𝐿∕𝑣f are

respectively the Damköhler number for fracture–matrix mass transfer
and Damköhler number for transformation in the fracture domain, and
m = 𝜇m𝐿∕𝑣f is Damköhler number for transformation in the mo-
bile matrix domain. For mathematical convenience, we assume 𝑃m =
𝑃 f and solve 𝑐f and 𝑐m using the method presented by Leij et al.
(2012). Then we compute the flux-averaged breakthrough curve in the
Laplace domain and evaluate the temporal moments from Eq. (C.1).

his method also applies to the triple-porosity model. However, fully
nalytical solutions in the Laplace domain may be challenging to obtain
or dual-permeability and triple-porosity models under more general
onditions (e.g., 𝑃m ≠ 𝑃 f). In those cases, we can compute the flux-
veraged aqueous PFAS concentration at the outlet using Eq. (A.22),
nd then evaluate the temporal moments from Eq. (C.1) via symbolic

calculations or numerical approximations.
We apply the above methods to compute the first and second

oments for all three models (see Table C.5). The relative differences
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in moments are used to identify the nonequilibrium transport regimes
and guide model selections. For a specific problem, if the relative
differences are small between two models with different complexities,
the simpler model is then sufficient for the simulations. Otherwise, the
more sophisticated model may need to be adopted. For example, if the
fracture flow is much faster than the matrix flow (i.e., 𝜂 = 𝑣m∕𝑣f → 0)
n a heterogeneous vadose zone, a dual-permeability model will share
he same moments as those of a dual-porosity model. In that case, a
ual-porosity model can be used. Furthermore, if the residence time
n the fracture domain is much longer than the time scale of fracture–
atrix mass transfer (i.e., Daf,m → ∞), the dual-porosity model shares

he same moments as those of an effective single-porosity model. The
arameters for the effective single-porosity model can be obtained by
omparing the moments for the two models, as provided in Table C.5.

The comparison shows that the parameters for the effective single-
porosity model (i.e., Eq. (C.3)) are given by: 𝑅 = 𝑤f𝜃f𝑅f+𝑤im𝜃im𝑅im

𝑤f𝜃f+𝑤im𝜃im
,

𝑃 = 𝑃 f = 𝑣f𝐿∕𝐷f, and  =
𝑤f𝜃ff+𝑤im𝜃imim

𝑤f𝜃f
= 𝐿

𝑣f

𝑤f𝜃f𝜇f+𝑤im𝜃im𝜇im
𝑤f𝜃f

,
here the parameters with subscripts ‘‘f ’’ and ‘‘im’’ are respectively

defined in the fracture and immobile matrix domains of the dual-
porosity model. Additionally, the dimensionless time in the effective
model (i.e., Eq. (C.3)) is given by 𝑇 = 𝑡∕(𝐿∕𝑣̄) where 𝑣̄ = 𝑤f𝜃f𝑣f∕(𝑤f𝜃f +

im𝜃im). If Eq. (17) is used, the effective parameters remain the same
i.e., 𝑣 = 𝑣f, 𝐷 = 𝐷f, and 𝜇 = 𝑤f𝜃f𝜇f+𝑤im𝜃im𝜇im

𝑤f𝜃f
), except that 𝑅 becomes

𝑤f𝜃f𝑅f+𝑤im𝜃im𝑅im
𝑤f𝜃f

.

Appendix D. Supplementary materials for Section 4

D.1. Initial concentration profile for post-contamination simulations at the
odel agricultural site

We generate the initial PFAS concentration profile for the post-
ontamination simulations by simulating 30 years of land application
f biosolids using the dual-permeability model. The first step is to
artition the total infiltration rate (𝐼0) into the fracture and matrix
omains such that the two domains are in hydraulic equilibrium under
ravity-driven flow. The actual infiltration rates and water contents in
he two domains are determined by solving the nonlinear algebraic
quation 𝐼 f + 𝐼m = 𝑤f𝑘𝑟,f(𝜃f)𝐾𝑠𝑎𝑡,f +𝑤m𝑘𝑟,m(𝜃m)𝐾𝑠𝑎𝑡,m = 𝐼0 (see Fig. D.1

for the simulated conditions). Second, we determine the parameters
for PFAS transport as follows. We assume that mechanical dispersion
is dominant (i.e., 𝑣𝛼𝐿 ≫ 𝜏 𝐷0 ≈ 0) in the fracture and mobile matrix
domains. Solid-phase and air–water interfacial adsorption are assumed
instantaneous (i.e., 𝐹 sw

eq = 𝐹 aw
eq = 1). We estimate 𝐴aw for the fracture

and matrix domains using the thermodynamic method (Eq. (3)) with a
roughness scaling factor of 1. The remaining PFAS transport parameters
(including PFAS release rate, PFAS molecular weight, fracture–matrix
mass-transfer rate constant, dispersivity, solid-phase adsorption coeffi-
cient, air–water interfacial adsorption coefficient, and transformation
rate constant) are collected from the literature (Guo et al., 2022; Smith
t al., 2024; Liu et al., 2021), which we summarize in Table 4. Finally,
e use the parameters to solve the PFAS transport equations. This gives

he distribution of PFAS across the vadose zone resulting from the
30-year contamination. We generate the initial concentration profiles
for both the PFOS and PFOSB simulations. Because the legacy PFOS
is modeled in the PFOS simulations, the PFOSB simulations do not
consider the release of legacy PFOS from biosolids.

D.2. Soil water characteristics for the soil in the vadose zone at the model
agricultural site

We present in Fig. D.1 the soil water characteristic curves for the
soil in the fracture and matrix domain of the vadose zone at the model
agricultural site and the simulated water saturation conditions.
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Table C.5
First and second temporal moments (𝑚1 and 𝑚2) of the breakthrough curves
at the outlet (𝑍 = 1) corresponding to a Dirac delta injection at the inlet
𝑍 = 0) for the single-porosity, dual-porosity, and dual-permeability models.

For the convenience of mathematical derivations, we assume (1) the adsorption
is instantaneous for all three models, (2) the dual-porosity model only contains
one immobile matrix domain, and (3) the dual-permeability model has the
same Péclet number in the fracture and matrix domains (i.e., 𝑃m = 𝑃 f).

Single-porosity model
𝑚1 𝑅 × exp

[

𝑃
2

(

1 − 𝑔1∕20

)]

𝑔−1∕20
a

𝑚2

(

𝑅2 + 2𝑔−1∕20

𝑃
𝑅2

)

× exp
[

𝑃
2

(

1 − 𝑔1∕20

)]

𝑔−10
a

Dual-porosity model
𝑚1

[

𝛽 𝑅 + (1 − 𝛽)𝑅
Da2f,m

(𝜃imim+Daf,m )2

]

× exp
[

𝑃 f
2

(

1 − 𝑔1∕20

)]

𝑔−1∕20
b

𝑚2

{ [
𝛽 𝑅 + (1 − 𝛽)𝑅

Da2f,m
(𝜃imim+Daf,m )2

]2

+ 2𝑔−1∕20

𝑃 f

[

𝛽 𝑅 + (1 − 𝛽)𝑅
Da2f,m

(𝜃imim+Daf,m )2

]2

+𝑔1∕20 (1 − 𝛽)2𝑅2 2𝛾 𝜃im
1−𝛾

Da2f,m
(𝜃imim+Daf,m )3

}

× exp
[

𝑃 f
2

(

1 − 𝑔1∕20

)]

𝑔−10
b

Dual-permeability model
𝑚1 −

[

2𝜂(1−𝛾)Daf,m (𝜂 𝑅f−𝑅m )
𝜃m𝑄0 (−𝜂 𝐻 f,0+𝐻m,0+𝑄0 )

]

× exp
[

𝑃 f
2

(

1 − 𝑔1∕21,0

)]

+
[

1 + 2𝜂(1−𝛾)Daf,m

𝛾 𝜃m (−𝜂 𝐻 f,0+𝐻m,0+𝑄0 )

]

[

𝛽 𝑅 −𝜂 𝐻 f,0+𝐻m,0+𝑄0

2𝑄0
+ (1 − 𝛽)𝑅

2Da2f,m
𝜃2m𝑄0 (−𝜂 𝐻 f,0+𝐻m,0+𝑄0 )

]

× exp
[

𝑃 f
2

(

1 − 𝑔1∕21,0

)]

𝑔−1∕21,0

+
[

2𝜂(1−𝛾)Daf,m (𝜂 𝑅f−𝑅m )
𝜃m𝑄0 (𝜂 𝐻 f,0−𝐻m,0+𝑄0 )

]

× exp
[

𝑃 f
2

(

1 − 𝑔1∕22,0

)]

+
[

1 − 2𝜂(1−𝛾)Daf,m

𝛾 𝜃m (𝜂 𝐻 f,0−𝐻m,0+𝑄0 )

]

[

𝛽 𝑅 𝜂 𝐻 f,0−𝐻m,0+𝑄0

2𝑄0
+ (1 − 𝛽)𝑅

2Da2f,m
𝜃2m𝑄0 (𝜂 𝐻 f,0−𝐻m,0+𝑄0 )

]

× exp
[

𝑃 f
2

(

1 − 𝑔1∕22,0

)]

𝑔−1∕22,0
c

𝑚2
𝑣̄
𝛾 𝑣f

[

2𝜂 𝛾(1−𝛾)(𝜂 𝑅f−𝑅m )2Daf,m

𝜃m𝑄3
0

]

× exp
[

𝑃 f
2

(

1 − 𝑔1∕21,0

)]

− 𝑣̄
𝛾 𝑣f

4𝜂(1−𝛾)Daf,m (𝜂 𝑅f−𝑅m )
𝜃m𝑄0 (−𝜂 𝐻 f,0+𝐻m,0+𝑄0 )

[

𝛽 𝑅 −𝜂 𝐻 f,0+𝐻m,0+𝑄0

2𝑄0
+ (1 − 𝛽)𝑅

2Da2f,m
𝜃2m𝑄0 (−𝜂 𝐻 f,0+𝐻m,0+𝑄0 )

]

× exp
[

𝑃 f
2

(

1 − 𝑔1∕21,0

)]

𝑔−1∕21,0

+ 𝑣̄
𝛾 𝑣f

{

[

1 + 2𝜂(1−𝛾)Daf,m

𝛾 𝜃m (−𝜂 𝐻 f,0+𝐻m,0+𝑄0 )

]

[

𝛽 𝑅 −𝜂 𝐻 f,0+𝐻m,0+𝑄0

2𝑄0
+ (1 − 𝛽)𝑅

2Da2f,m
𝜃2m𝑄0 (−𝜂 𝐻 f,0+𝐻m,0+𝑄0 )

]2

+
2𝑔−1∕21,0

𝑃 f

[

1 + 2𝜂(1−𝛾)Daf,m

𝛾 𝜃m (−𝜂 𝐻 f,0+𝐻m,0+𝑄0 )

]

[

𝛽 𝑅 −𝜂 𝐻 f,0+𝐻m,0+𝑄0

2𝑄0
+ (1 − 𝛽)𝑅

2Da2f,m
𝜃2m𝑄0 (−𝜂 𝐻 f,0+𝐻m,0+𝑄0 )

]2

+𝑔1∕21,0

[

1 − 𝜂(1−𝛾)𝛽
𝛾(1−𝛽)

]2
(1 − 𝛽)2𝑅2

[

1 + 2𝜂Daf,m

𝜃m (−𝜂 𝐻 f,0+𝐻m,0+𝑄0 )

] 2𝛾 𝜃mDa2f,m
(1−𝛾)(𝜃m𝑄0 )3

}

× exp
[

𝑃 f
2

(

1 − 𝑔1∕21,0

)]

𝑔−11,0

− 𝑣̄
𝛾 𝑣f

[

2𝜂 𝛾(1−𝛾)(𝜂 𝑅f−𝑅m )2Daf,m

𝜃m𝑄3
0

]

× exp
[

𝑃 f
2

(

1 − 𝑔1∕22,0

)]

+ 𝑣̄
𝛾 𝑣f

[

4𝜂(1−𝛾)Daf,m (𝜂 𝑅f−𝑅m )
𝜃m𝑄0 (𝜂 𝐻 f,0−𝐻m,0+𝑄0 )

]

[

𝛽 𝑅 𝜂 𝐻 f,0−𝐻m,0+𝑄0

2𝑄0
+ (1 − 𝛽)𝑅

2Da2f,m
𝜃2m𝑄0 (𝜂 𝐻 f,0−𝐻m,0+𝑄0 )

]

× exp
[

𝑃 f
2

(

1 − 𝑔1∕22,0

)]

𝑔−1∕22,0

+ 𝑣̄
𝛾 𝑣f

{

[

1 − 2𝜂(1−𝛾)Daf,m

𝛾 𝜃m (𝜂 𝐻 f,0−𝐻m,0+𝑄0 )

]

[

𝛽 𝑅 𝜂 𝐻 f,0−𝐻m,0+𝑄0

2𝑄0
+ (1 − 𝛽)𝑅

2Da2f,m
𝜃2m𝑄0 (𝜂 𝐻 f,0−𝐻m,0+𝑄0 )

]2

+
2𝑔−1∕22,0

𝑃 f

[

1 − 2𝜂(1−𝛾)Daf,m

𝛾 𝜃m (𝜂 𝐻 f,0−𝐻m,0+𝑄0 )

]

[

𝛽 𝑅 𝜂 𝐻 f,0−𝐻m,0+𝑄0

2𝑄0
+ (1 − 𝛽)𝑅

2Da2f,m
𝜃2m𝑄0 (𝜂 𝐻 f,0−𝐻m,0+𝑄0 )

]2

−𝑔1∕22,0

[

1 − 𝜂(1−𝛾)𝛽
𝛾(1−𝛽)𝑅

]2
(1 − 𝛽)2𝑅2

(

1 + 𝜂 𝐻 f,0−𝐻m,0−𝑄0

2Daf,m

) 2𝛾 𝜃mDa2f,m
(1−𝛾)(𝜃m𝑄0 )3

}

× exp
[

𝑃 f
2

(

1 − 𝑔1∕22,0

)]

𝑔−12,0
c

a 𝑅 = 1 +𝐾sw𝜌∕𝜃 +𝐾aw𝐴aw∕𝜃, 𝑔0 = 1 + 4ℎ0∕𝑃 , ℎ0 =  = 𝜇 𝐿∕𝑣, and 𝑃 = 𝑣𝐿∕𝐷.
b 𝛾 = 𝑤f𝜃f∕𝜃, 𝜃 = 𝑤f𝜃f + 𝑤im𝜃im, 𝑣̄ = 𝛾 𝑣f + (1 − 𝛾)𝑣im, 𝛽 = 𝛾 𝑅f∕𝑅, 𝑅 = 𝛾 𝑅f + (1 − 𝛾)𝑅im,
𝑔0 = 1 + 4ℎ0∕𝑃 f, ℎ0 = f +

(1−𝛾)imDaf,m

𝛾
(

𝜃imim+Daf,im

) .

c 𝜂 = 𝑣m∕𝑣f, 𝛾 = 𝑤f𝜃f∕𝜃, 𝛽 = 𝛾 𝑅f∕𝑅, 𝜃 = 𝑤f𝜃f + 𝑤m𝜃m, 𝑣̄ = 𝛾 𝑣f + (1 − 𝛾)𝑣m,
𝑅 = 𝛾 𝑅f + (1 − 𝛾)𝑅m, 𝐻 f,0 = f + (1 − 𝛾)Daf,m∕(𝛾 𝜃m), 𝐻m,0 = m + Daf,m∕𝜃m,
𝑄0 = [(𝜂 𝐻 f,0 − 𝐻m,0)2 + 4𝜂(1 − 𝛾)Daf,m∕(𝛾 𝜃m)]1∕2, 𝑔1,0 = 1 + 2

𝜂 𝑃 f
(𝜂 𝐻 f,0 + 𝐻m,0 − 𝑄0),

𝑔2,0 = 1 + 2
𝜂 𝑃 f

(𝜂 𝐻 f,0 +𝐻m,0 +𝑄0).

D.3. Mass discharge concentrations for PFAS and their transformation
product in the vadose zone at the model agricultural site

Fig. D.2 presents the mass discharge concentrations for PFAS and
their transformation product through the vadose zone of the model
agricultural site.
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Fig. D.1. Soil water characteristic curves and relative permeability curves for soils in the fracture and matrix domains of the vadose zone at the model agricultural
ite. The dots indicate the water contents and relative permeabilities in the two domains under the simulated condition.
Fig. D.2. Mass discharge concentrations for PFAS and their transformation product in the vadose zone at the model agricultural site.
Data availability

All datasets used in the study have been presented in the manuscript
and appendices.
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